V. 83, N 4

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ОКСИФТОРИДНЫХ СТЕКОЛ, СОАКТИВИРОВАННЫХ ИОНАМИ (Yb³⁺, Eu³⁺) И (Yb³⁺, Tb³⁺)

Е. В. Вилейшикова^{1*}, П. А. Лойко¹, Г. Е. Рачковская², Г. Б. Захаревич², К. В. Юмашев¹

УДК 535.37:666.22

¹ Центр оптических материалов и технологий, Белорусский национальный технический университет, 220013, Минск, просп. Независимости, 65/17, Беларусь; e-mail: vilejshikova@gmail.com ² Белорусский государственный технологический университет, Минск, Беларусь

(Поступила 8 сентября 2015)

Исследованы спектрально-люминесцентные свойства оксифторидных стекол системы SiO_2 -PbO-PbF₂-CdF₂, активированных ионами Yb³⁺, Eu³⁺ и Tb³⁺. Для стекол, допированных Eu₂O₃, время жизни ионов Eu³⁺ $\tau({}^{5}D_{0}) = 1.73$ мс. Для стекол, допированных Tb₂O₃, время жизни ионов Tb³⁺ $\tau({}^{5}D_{4}) = 2.25$ мс. Для стекол, соактивированных ионами (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺), при возбуждении на длине волны 960 нм в полосу поглощения ионов Yb³⁺ наблюдалась интенсивная красная и зеленая ир-конверсионная люминесценция, обусловленная кооперативным переносом энергии от пар Yb³⁺-Yb³⁺ к ионам Eu³⁺ и Tb³⁺. При возбуждении в УФ области спектра на длине волны 355 нм зарегистрирована down-конверсионная люминесценция ионов Yb³⁺ в области ~1 мкм.

Ключевые слова: оксифторидные стекла, ир-конверсия, down-конверсия, ион европия, ион тербия.

Spectral and luminescent properties of the oxyfluoride glasses in the system SiO₂-PbO-PbF₂-CdF₂ doped with Yb³⁺, Eu³⁺, and Tb³⁺ ions are investigated. For the glasses doped with Eu₂O₃, the lifetime of Eu³⁺ ions, $\tau({}^{5}D_{0})$ is 1.73 ms. For the glasses doped with Tb₂O₃, the lifetime of Tb³⁺ ions, $\tau({}^{5}D_{4})$ is 2.25 ms. For the glasses codoped with (Yb³⁺, Eu³⁺) and (Yb³⁺, Tb³⁺) ions under 960 nm excitation to the absorption band of Yb³⁺ ions, intense red and green up-conversion luminescence is observed, respectively. This luminescence is attributed to the cooperative energy transfer from the Yb³⁺-Yb³⁺ ion pairs to the Eu³⁺ and Tb³⁺ ions. Under UV excitation at the wavelength of 355 nm, we detected the down-conversion luminescence of Yb³⁺ ions in the vicinity of ~1 µm.

Keywords: oxyfluoride glasses, up-conversion, down-conversion, europium ion, terbium ion.

Введение. Up-конверсией называют сложный процесс образования антистоксовой люминесценции, который протекает в несколько этапов, в том числе поглощение люминесцирующей системой нескольких низкоэнергетических фотонов и последующее испускание одного фотона с большей энергией [1]. Наиболее эффективную up-конверсию удается наблюдать в конденсированных средах, содержащих в качестве донорно-акцепторных пар трехвалентные редкоземельные ионы (Yb³⁺, RE³⁺), где RE³⁺ = Er³⁺, Ho³⁺, Tm³⁺ [2—4] и др. Ионы иттербия являются сенсибилизаторами up-конверсионной люминесценции редкоземельных ионов [5]. Такие материалы эффективно преобразуют оптическое излучение с длиной волны ~1 мкм в видимый свет, спектральный состав которого определяется люминесцентными свойствами ионов-акцепторов RE³⁺.

SPECTRAL-LUMINESCENT PROPERTIES OF OXYFLUORIDE GLASSES CODOPED WITH (Yb³⁺, Eu³⁺) AND (Yb³⁺, Tb³⁺) IONS

E. V. Vilejshikova^{1*}, **P. A. Loiko**¹, **G. E. Rachkovskaya**², **G. B. Zakharevich**², and K. V. Yumashev¹ (¹ Center for Optical Materials and Technologies, Belarusian National Technical University, 65/17 Nezavisimosti Prosp., Minsk, 220013, Belarus; e-mail: vilejshikova@gmail.com; ² Belarusian State Technological University, Minsk, Belarus) Люминофоры, содержащие ионы европия Eu³⁺ и тербия Tb³⁺, характеризуются интенсивной красной и зеленой люминесценцией, обусловленной электронными переходами из их метастабильных состояний ${}^{5}D_{0}$ (для Eu³⁺) и ${}^{5}D_{4}$ (для Tb³⁺) в более низколежащие состояния ${}^{7}F_{J}$ (J = 0, ..., 6). Долгоживущие состояния ${}^{5}D_{0}$ (Eu³⁺) и ${}^{5}D_{4}$ (Tb³⁺) этих ионов изолированы относительно состояний ${}^{7}F_{J}$ большим энергетическим зазором (>12000 см⁻¹). По этой причине люминесценция Eu- и Tb-содержащих сред характеризуется высокой квантовой эффективностью, что обусловливает их широкое применение в качестве активаторов красных и зеленых люминофоров [6, 7], а также люминесцентных меток в химии и биологии [8]. Особенностью ионов Eu³⁺ и Tb³⁺ [9] как активаторов ирконверсионных материалов является отсутствие электронных состояний с энергиями, близкими к энергии единственного возбужденного состояния чона Yb³⁺ (~10000 см⁻¹). Это исключает возможность образования up-конверсионной люминесценции через последовательную сенсибилизацию, которая реализуется, например, в средах, активированных ионами Yb³⁺, Er³⁺ [2]. Единственный возможный механизм процесса up-конверсии в таких материалах — кооперативный перенос энергии от двух возбужденных ионов Yb³⁺ к одному иону Eu³⁺ и ит b³⁺ [9].

Активация среды парами ионов (Yb³⁺, Eu³⁺) или (Yb³⁺, Tb³⁺) может приводить к кооперативному переносу энергии в обратном направлении: Eu³⁺ \rightarrow Yb³⁺ [9—12] и Tb³⁺ \rightarrow Yb³⁺ [13]. Процесс возбуждения люминесценции ионов Yb³⁺ за счет сенсибилизации ионами Eu³⁺ или Tb³⁺ называется кооперативной down-конверсией. Поскольку этот процесс сопровождается преобразованием высокоэнергетического фотона в несколько фотонов меньшей энергии, его также называют "квантовой резкой" (quantum cutting) [13—15]. Эффективность кооперативной up- и down-конверсии имеет тенденцию быстро убывать с увеличением межионного расстояния [16], поэтому для ее наблюдения желательна высокая локальная концентрация ионов-активаторов. Благодаря двунаправленности переноса энергии в средах, активированных ионами (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺), люминофоры, активированные этими ионами, позволяют осуществлять преобразование спектра солнечного излучения, сдвигая его в область длин волн 500—1000 нм. Одно из возможных применений такого преобразования — увеличение эффективности кремниевых фотоэлементов [17, 18] за счет уменьшения влияния потерь, связанных с неполным поглощением низкоэнергетических фотоонов ($\lambda > 1000$ нм), и термализации высокоэнергетических фотоэлектронов ($\lambda < 500$ нм).

Эффективность up- и down-конверсии определяется вероятностью переноса энергии донор-эакцептор, а также квантовым выходом люминесценции иона-акцептора. Наиболее существенный вклад в тушение люминесценции иона-акцептора вносит колебательная релаксация энергии электронного возбуждения. Вероятность многофононного перехода экспоненциально зависит от числа фононов, генерируемых в элементарном процессе релаксации, поэтому достаточно мала в низкофононных средах [19]. Это делает привлекательным использование в качестве основы up- и down-конверсионных материалов фторидных матриц, максимальная частота фононов которых обычно 400-600 см⁻¹ [20-22].

В настоящей работе исследованы спектрально-люминесцентные свойства оксифторидных стекол, соактивированных па́рами ионов (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺).

Материалы и эксперимент. Стекла синтезированы в системе $40SiO_2-20PbO-30PbF_2-10CdF_2$ (мол.%) при температуре $900 \pm 50^{\circ}$ С в корундовых тиглях объемом 25 мл в электрической печи на воздухе в течение 0.5 ч. Готовая стекломасса выливалась на гладкую металлическую поверхность. Далее стекло подвергалось отжигу при температуре ~300 °C, после чего инерционно охлаждалось до комнатной температуры. Основная матрица стекла активирована оксидами европия Eu₂O₃ (1 мол.%) и тербия Tb₂O₃ (1 мол. %), а также фторидом иттербия YbF₃ в различной концентрации (1—4 мол.%). Использованная технология изготовления стекол позволяет получать низкофононные оксифторидные стеклянные матрицы для создания на их основе эффективных люминофоров [23, 24], в том числе на-ноструктурированных [25, 26]. Исследуемые образцы представляют собой прозрачные полированные пластинки толщиной 3 мм.

Спектры поглощения измерены на двухлучевом спектрофотометре Varian CARY-5000. Спектры люминесценции зарегистрированы с помощью компактного спектрометра SOLAR S100. Спектры скорректированы с учетом спектральной чувствительности CCD-матрицы спектрометра (Toshiba TCD1205D) и спектра пропускания оптического волокна (Z-light, low-OH Si multimode fiber). Up-конверсионная люминесценция возбуждалась излучением лазерного InGaAs-диода (~960 нм). В качестве источника возбуждения стоксовой люминесценции ионов Eu³⁺ и Tb³⁺ использовано излучение третьей гармоники YAG:Nd-лазера (LOTIS TII LS-2137, ~355 нм). Кинетические исследования люминесценции проведены путем регистрации ее сигнала с фотоприемника Нататаtsu C5460

скоростным цифровым осциллографом Tektronix TDS 3052В. При этом в качестве источника возбуждения люминесценции использованы импульсы (~18 нс) 3-й гармоники YAG:Nd-лазера.

Результаты и их обсуждение. На рис. 1 приведены спектры поглощения оксифторидных стекол, активированных ионами (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺), в спектральном диапазоне, соответствующем поглощению ионов Eu³⁺ и Tb³⁺. Ион Eu³⁺ обладает нормальной электронной конфигурацией с незаполненной 4f⁶-оболочкой. Для нее характерна система электронных состояний, содержащая глубоколежащие термы ⁷F_J и систему высокоэнергетических состояний, соответствующих термам ⁵D_J, ⁵H_J, ⁵G_J и ⁵L_J. Электронные состояния нормальной конфигурации Tb³⁺ [Xe]4f⁸ по системе электронных термов идентичны состояния конфигурации Eu³⁺ [Xe]4f⁶ и обладают обращенной тонкой структурой (направлением изменения значения J). В спектре поглощения образца с ионами Eu³⁺ (рис. 1, *a*) в коротковолновой области наблюдается ряд полос, относящихся к переходам ионов Eu³⁺ из основного состояния ⁷F₀ и термически заселенного ⁷F₁ в состояния ⁵D₀, ⁵D₁, ⁵D₂, ⁵D₃ и ⁵L₆. Наиболее интенсивны среди них полосы поглощения с максимумами в областях ~400 нм (переход ⁷F_{0,1}→⁵L₆) и ~464 нм (⁷F_{0,1}→⁵D₂). Образец, активированный ионами Tb³⁺, характеризуется относительно слабым поглощением в видимой области спектра (рис. 1, *b*). Наблюдаемая полоса с максимумом ~485 нм соответствует электронным переходам этого иона из основного состояния ⁷F₆ в метастабильное состояние ⁵D₄. В ближней ИК области спектра для всех образцов наблюдается относительно сильное поглощение ионов Eu³⁺ и Tb³⁺, обусловленное переходами между состояния ⁷F_J.

Рис. 1. Спектры поглощения ионов европия $Eu^{3+}(a)$ и тербия $Tb^{3+}(b)$ в исследуемых оксифторидных стеклах

Все исследуемые стекла, содержащие ионы Yb³⁺, характеризуются сильным поглощением в области ~1 мкм, соответствующей электронным переходам этих ионов ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$. Ионы Eu³⁺ и Tb³⁺ не поглощают в этой области спектра, поэтому сенсибилизация их люминесценции возбужденными ионами Yb³⁺ возможна только через кооперативные эффекты. В средах, содержащих ионы Yb³⁺, можно наблюдать люминесценцию в синей области видимого спектра (~480 нм) при возбуждении на $\lambda_{воз6} \approx 980$ нм, механизм которой заключается в образовании виртуального энергетического состояния кластера двух близко расположенных ионов Yb³⁺–Yb³⁺ с энергией 2*E*(${}^{2}F_{5/2}$) ~ 21000 см⁻¹. Такой кооперативный процесс возможен и является результатом кулоновских взаимодействий между ионами Yb³⁺ [27]. В средах, соактивированных ионами (Yb³⁺, RE³⁺), можно ожидать возбуждения up- и down-конверсионной люминесценции через перенос энергии с участием виртуального состояния кооперативных ионов Yb³⁺ [5].

кооперативно возбужденных ионов Yb³⁺ [5]. В стеклах с парами ионов (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺) возможны кооперативные процессы, приволящие к up-конверсионной люминесценции ионов Eu³⁺ и Tb³⁺, а также down-конверсионной люминесценции ионов Yb³⁺. Механизм кооперативной up-конверсии состоит из нескольких этапов: сначала ионы Yb³⁺ резонансно возбуждаются в состояние с энергией 2*E* (²*F*_{5/2}), после чего происходят перенос энергии к ионам Eu³⁺ или Tb³⁺, безызлучательная релаксация в системе высоколежащих возбужденных состояний и излучательные переходы из метастабильных состояний этих ионов.

Во всех исследуемых стеклах, соактивированных ионами (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺), наблюдается интенсивная антистоксова люминесценция ионов Eu³⁺ и Tb³⁺ при $\lambda_{B036} = 960$ нм, соответствующей полосе поглощения иона Yb³⁺. На рис. 2, *a*, *б* приведены спектры люминесценции ионов Eu³⁺ и Tb³⁺

в образцах с концентрацией Eu_2O_3 и Tb_2O_3 1 мол.% и концентрацией YbF_3 4 мол.%. В спектре образца с ионами Yb^{3^+} , Eu^{3^+} полосы с максимумами при ~577, 589, 611, 650 и 698 нм относятся к переходам иона $Eu^{3^+} {}^5D_0 \rightarrow {}^7F_J$, J = 1, 2, 3, 4 соответственно. Метастабильное состояние иона $Eu^{3^+} {}^5D_0$, переходами из которого обусловлена наблюдаемая люминесценция, может заселяться за счет безызлучательной релаксации из состояний ${}^5D_1(E \sim 19000 - 19100 \text{ см}^{-1})$ и 5D_2 (~21500 - 21600 cm $^{-1}$), возбужденных сенсибилизатором ($Yb^{3^+} - Yb^{3^+}$, 20500 - 20900 см $^{-1}$). При этом различие энергий может компенсироваться за счет поглощения или возбуждения одного или нескольких фононов матрицы стекла.

Интенсивные полосы люминесценции ~488, 543, 583, 619, 647, 670 и 681 нм, наблюдаемые для стекол с ионами Yb³⁺, Tb³⁺, обусловлены электронными переходами иона Tb³⁺ $^{5}D_{4} \rightarrow ^{7}F_{J}$, J=6, 5, 4, 3, 2, 1, 0 соответственно. Заселение состояния $^{5}D_{4}$ иона Tb³⁺, происходящее за счет процесса 2Yb³⁺ \rightarrow Tb³⁺, объясняет интенсивную up-конверсионную люминесценцию в этих стеклах. Поскольку она наблюдается в переходах непосредственно из этого состояния, разгорание ее несущественно. Это приводит к тому, что возбуждение up-конверсионной люминесценции происходит с меньшими потерями энергии на разогрев матрицы за счет процессов релаксации, чем в образцах с ионами Yb³⁺, Eu³⁺.

Для кооперативной люминесценции необходима высокая локальная концентрация активных ионов Yb³⁺ [16]: ее наблюдение возможно только тогда, когда расстояние между соседними ионами не превышает ~0.5 нм. В данной работе исследуются стекла, в которых концентрации ионов Yb³⁺ достаточно малы ($\approx 1.15 \cdot 10^{20}$ см⁻³). При равномерном распределении ионов в стеклянной матрице расстояние между соседними ионами ~2 нм, поэтому по интенсивности кооперативной люминесценции можно судить о степени кластеризации ионов Yb³⁺ в стекле. Оксифторидные стекла характеризуются неоднородной структурой по причине относительно слабой растворимости фтора в оксидной матрице [28]. Наличие в стекле микрообластей, обогащенных фторсодержащими группами [28, 29] фторидов и оксифторидов металлов, приводит к тому, что концентрация иттербия в этих областях, введенного в матрицу как YbF₃, оказывается достаточной для возбуждения димера Yb³⁺ –Yb³⁺ в виртуальное состояние с энергией 2*E* (²*F*_{5/2}).

Рис. 2. Спектры ир-конверсионной люминесценции ($\lambda_{B036} = 980$ нм) оксифторидных стекол, активированных ионами (Eu³⁺, Yb³⁺) (*a*) и (Tb³⁺, Yb³⁺) (*b*), и спектры люминесценции ($\lambda_{B036} = 355$ нм) стекол с ионами (Eu³⁺, Yb³⁺) (*b*) и (Tb³⁺, Yb³⁺) (*c*); штриховая линия — спектр люминесценции ($\lambda_{B036} = 980$ нм) стекла, активированного ионами Yb³⁺

При возбуждении стоксовой люминесценции на $\lambda_{B036} = 355$ нм (рис. 2, *e*, *c*) кроме люминесценции ионов Eu³⁺ и Tb³⁺ в спектрах также наблюдается люминесценция ионов Yb³⁺ ($\lambda \sim 1$ мкм). Последняя свидетельствует о протекании в системе еще одного кооперативного процесса, обратного up-конверсии, — процесса down-конверсии. При этом перенос от ионов Eu³⁺ в сторону ионов Yb³⁺ реализуется по различным механизмам. В процессе кооперативной down-конверсии участвуют три иона: пара ионов Yb³⁺ и ион Eu³⁺ или Tb³⁺. Сначала ион Eu³⁺ или Tb³⁺ возбуждается в высокоэнергетическое состояние ⁵D₁ или ⁵D₂ (Eu³⁺) или ⁵D₄ (Tb³⁺), после чего через процесс переноса энергии Eu³⁺ \rightarrow 2Yb³⁺ или Tb³⁺ происходит возбуждение двух ионов Yb³⁺ в состояние ²F_{5/2} с участием виртуального состояния с энергией 2E (²F_{5/2}) [9—14, 30]. В стекле с ионами (Yb³⁺, Eu³⁺) ИК люминесценция Yb³⁺ превосходит по интенсивности красную люминесценцию ионов Eu³⁺, являющихся сенсибилизаторами при $\lambda_{B036} \sim 355$ нм. В образцах с ионами (Yb³⁺, Tb³⁺) люминесценция Yb³⁺, в противоположность предыдущему случаю, относительно слабая по сравнению с зеленой люминесценцие ей ионов Tb³⁺.

Для более детального исследования механизмов наблюдаемых процессов определены времена затухания люминесценции ионов Yb³⁺, Eu³⁺ и Tb³⁺ в образцах с различной концентрацией Eu₂O₃, Tb₂O₃ и YbF₃. Время жизни состояния ²F_{5/2} иона Yb³⁺ в оксифторидном стекле 0.992 мс. При соактивации стекла ионами (Eu³⁺, Yb³⁺) или (Tb³⁺, Yb³⁺) время жизни люминесценции Yb³⁺ сокращается относительно этого значения, что согласуется с представлениями о тушении люминесценции за счет процессов кооперативного переноса энергии. На рис. 3, *a*, *б* приведены кривые затухания наблюдаемой люминесценции ионов Yb³⁺ в образцах стекол, активированных 1 мол.% Eu₂O₃ или Tb₂O₃ и 4 мол.% YbF₃, в сравнении с затуханием люминесценции ионов Yb³⁺ в образцах, основным механизмом тушения люминесценции Yb³⁺ в них являются процессы 2Yb³⁺ — Eu³⁺ или 2Yb³⁺ — Tb³⁺.

Кривые затухания видимой люминесценции ионов Eu^{3+} и Tb^{3+} при $\lambda_{B035} = 355$ нм приведены на рис. 3, *в*, *г*. Красная люминесценция ионов Eu^{3+} в стекле, активированном 1 мол.% Eu_2O_3 , соответствующая электронным переходам из долгоживущего состояния 5D_0 , характеризуется временем жизни 1.73 мс. Соактивация образца ионами Yb³⁺, Eu^{3+} приводит к появлению дополнительного канала тушения люминесценции, связанного с down-конверсией, поскольку времена жизни люминесценции

Рис. 3. Кривые затухания люминесценции ионов Yb³⁺ в оксифторидных стеклах: *a* — стекло, активированное ионами (Yb³⁺, Eu³⁺) и только ионами Yb³⁺; *б* — стекло, активированное ионами (Yb³⁺, Tb³⁺) и только ионами Yb³⁺ ($\lambda_{воз6} = 980$ нм, $\lambda_{люм} = 1030$ нм), *в* — стекло, активированное ионами (Yb³⁺, Eu³⁺) и только ионами Eu³⁺ ($\lambda_{воз6} = 355$ нм, $\lambda_{люм} = 610$ нм); *г* — стекло, активированное ионами (Yb³⁺, Eu³⁺) и только ионами Eu³⁺ ($\lambda_{воз6} = 355$ нм, $\lambda_{люм} = 543$ нм)

сокращаются, а кривые затухания приобретают явно немоноэкспоненциальный характер (рис. 3, *в*). Тушение люминесценции европия из состояния ${}^{5}D_{0}$ осуществляется через сенсибилизацию люминесценции Yb³⁺ в результате переноса энергии Eu³⁺ \rightarrow Yb³⁺ [11, 12].

В случае стекла с ионами Tb^{3+} и Yb^{3+} down-конверсия также протекает по механизму кооперативного возбуждения с участием виртуального состояния пары ионов $\text{Yb}^{3+}-\text{Yb}^{3+}$ с энергией 2E (${}^{2}F_{5/2}$) и долгоживущего состояния ${}^{5}D_{4}$ иона Tb^{3+} . Время затухания люминесценции из метастабильного состояния ${}^{5}D_{4}$ иона Tb^{3+} уменьшается от 2.25 до 2.17 мс. В табл. 1 приведены результаты измерения времен затухания люминесценции активных ионов в исследуемых образцах. Времена затухания люминесценции в образцах с немоноэкспоненциальными кривыми ее затухания определены по быстрой компоненте в предположении ее ответственности за перенос энергии между активными ионами.

Концентрация активаторов	Время, мс	Концентрация активаторов	Время, мс		
$\lambda_{\text{bogd}} = 980$ hm, $\lambda_{\text{люм}} = 10$	030 нм	$\lambda_{B036} = 980$ нм, $\lambda_{ЛЮМ} = 1030$ нм			
1YbF3	0.99	1 YbF3	0.99		
$1Eu_2O_3-1YbF_3$	0.98	$1 \text{Tb}_2 \text{O}_3 - 1 \text{YbF}_3$	0.94		
$1Eu_2O_3-1.5YbF_3$	0.92	$1 \text{Tb}_2 \text{O}_3 - 1.5 \text{YbF}_3$	0.88		
$1Eu_2O_3-2YbF_3$	0.83	$1 \text{Tb}_2 \text{O}_3 - 2 \text{YbF}_3$	0.86		
$1Eu_2O_3-3YbF_3$	0.80	$1Tb_2O_3-3YbF_3$	0.81		
$1Eu_2O_3-4YbF_3$	0.75	1Tb ₂ O ₃ -4YbF ₃	0.65		
$\lambda_{B036} = 355$ HM, $\lambda_{JIKOM} = 6$	510 нм	$\lambda_{возб} = 355$ нм, $\lambda_{люм} = 543$ нм			
$1Eu_2O_3$	1.73	1Tb ₂ O ₃	2.25		
$1Eu_2O_3-1YbF_3$	1.48	$1 \text{Tb}_2 \text{O}_3 - 1 \text{YbF}_3$	2.24		
$1Eu_2O_3-1.5YbF_3$	1.31	$1 \text{Tb}_2 \text{O}_3 - 1.5 \text{YbF}_3$	2.22		
$1Eu_2O_3-2YbF_3$	1.29	$1 \text{Tb}_2 \text{O}_3 - 2 \text{YbF}_3$	2.21		
$1Eu_2O_3-3YbF_3$	1.25	$1 \text{Tb}_2 \text{O}_3 - 3 \text{YbF}_3$	2.20		
$1Eu_2O_3-4YbF_3$	1.12	$1 \text{Tb}_2 \text{O}_3 - 4 \text{YbF}_3$	2.17		

Та	блица 1.	Времена затухания люминесценции стекол с ионами	(Yb³⁺	, Eu'⁺)) и (Yb ^{э+} ,	Tb"	')
----	----------	---	-------	---------	-------------------------	-----	----

На основе измеренных времен жизни ионов Yb³⁺, Tb³⁺ и Eu³⁺ в возбужденном состоянии можно оценить эффективность переноса энергии между группами ионов в матрице (D — донор, A — акцептор), которая определяется отношением вероятности процесса переноса энергии к общей вероятности распада возбужденного состояния иона-донора D. Через времена жизни люминесценции ионов D и A эффективность процесса $D \rightarrow A$ определяется как $\eta_{ET} = 1 - (\tau_{D-A}/\tau_D)$, где τ_{D-A} — время затухания люминесценции иона D в образце, активированном ионами (D, A), τ_D — время жизни люминесценции образца, содержащего только ионы D. Следует отметить, что сокращение времени жизни ионов Yb³⁺ в стеклах, соактивированных ионами (Yb³⁺, RE³⁺), может происходить не только за счет переноса энергии 2Yb³⁺ \rightarrow RE³⁺ и последующих излучательных переходов из метастабильных состояний ионов RE³⁺, но и за счет тушения люминесценции Yb³⁺ ионами RE³⁺. Такое тушение может быть значительным по причине достаточно больших сил осцилляторов в переходах ⁷ $F_{0,1} \rightarrow ^7 F_{5,6}$ (Eu³⁺) и ⁷ $F_6 \rightarrow ^7 F_{0.2}$ (Tb³⁺). Учет различных физических механизмов в сокращении времени жизни Yb³⁺ в стеклах с редкоземельными ионами требует дальнейшего исследования.

Эффективности переноса энергии $Yb^{3+} \rightarrow Eu^{3+}$ и $Eu^{3+} \rightarrow Yb^{3+}$ монотонно возрастают с увеличением концентрации YbF_3 в образце (рис. 4, *a*). Оба процесса в стекле с ионами Yb^{3+} , Eu^{3+} обладают достаточно высокой и сравнимой эффективностью. Поскольку эти процессы оказываются конкурирующими, возбуждение люминесценции в стекле с Yb^{3+} , Eu^{3+} сопровождается двунаправленным переносом энергии между ионами Yb^{3+} и Eu^{3+} . Следует отметить, что значение η_{ET} для down-конверсии также является верхней оценкой. Это связано с тем, что возбужденные состояния $^{5}D_{1}$ и $^{5}D_{2}$ иона Eu^{3+} характеризуются малыми временами жизни, поэтому кооперативный перенос энергии $Eu^{3+} \rightarrow 2Yb^{3+}$ имеет относительно низкую вероятность. Конкурирующим механизмом является перенос энергии от иона Eu^{3+} в метастабильном состоянии $^{5}D_{0}$ к одному иону Yb^{3+} и дополнительное возбуждение Eu^{3+} в переходе $^{7}F_{0,1} \rightarrow ^{7}F_{5,6}$ [31, 32].

Рис. 4. Зависимость эффективности переноса энергии η_{ET} в оксифторидных стеклах с ионами (Yb³⁺, Eu³⁺) (*a*) и (Yb³⁺, Tb³⁺) (*б*) от концентрации YbF₃

Кооперативная up-конверсия в стекле с ионами Yb³⁺, Tb³⁺ оказывается намного эффективнее процесса down-конверсии (рис. 4, δ). Судя по росту эффективности процесса Tb³⁺ \rightarrow Yb³⁺ с увеличением концентрации фторида иттербия в образце, благоприятным условием для процесса кооперативной down-конверсии является большая концентрация ионов Yb³⁺ по отношению к ионам Tb³⁺.

Заключение. Синтезированы оксифторидные стекла системы SiO₂–PbO–PbF₂–CdF₂, активированные ионами европия, тербия и иттербия путем их допирования YbF₃ (1—4 мол.%), Eu₂O₃ или Tb₂O₃ в концентрации 1 мол.%. Исследовано их оптическое поглощение, up- и down-конверсионная люминесценция и кинетические характеристики люминесценции. При возбуждении на длине волны 980 нм в образцах, активированных ионами (Yb³⁺, Eu³⁺) и (Yb³⁺, Tb³⁺), наблюдалась интенсивная up-конверсионная люминесценция красного и зеленого цветов. Времена жизни метастабильных состояний ионов Eu³⁺ (${}^{5}D_{0}$) и Tb³⁺ (${}^{5}D_{4}$) составили 1.73 и 2.25 мс. Максимальная эффективность переноса энергии, определенная по сокращению времен затухания люминесценции, для процесса $2Yb^{3+} \rightarrow Eu^{3+}$ $\eta_{ET} = 23$ %, а для процесса $2Yb^{3+} \rightarrow Tb^{3+}$ $\eta_{ET} = 34$ %. При возбуждении стоксовой люминесценции в УФ области спектра зарегистрирована люминесценция ионов иттербия вблизи ~1 мкм. Максимальная эффективность процесса Eu³⁺ $\rightarrow Yb^{3+}$ достигает 34%. Благодаря возможности эффективного преобразования спектра излучения ближней ИК и УФ областей с минимальными потерями на возбуждение колебаний матрицы исследованные стекла могут быть перспективными полифункциональными люминофорами для увеличения эффективности солнечных батарей.

[1] F. Auzel. Chem. Rev., 104, N 1 (2004) 139-174

- [2] J. F. Suyver, J. Grimm, K. W. Krämer, H. U. Güdel. J. Lumin., 114, N 1 (2005) 53-59
- [3] X. Zou, H. Toratani. J. Non-Cyst. Sol., 181, N 1 (1995) 87-99
- [4] J. C. Boyer, L. A. Cuccia, J. A. Capobianco. Nano Lett., 7, N 3 (2007) 847-852

[5] F. Auzel. J. Lumin., 45, N 1 (1990) 341-345

[6] J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, C. H. Lu. J. Phys. Chem. B, 105, N 45 (2001) 11098-11105

[7] R. P. Rao. J. Electrochem. Soc., 150, N 8 (2003) H165-H171

[8] K. Binnemans, C. Görller-Walrand. J. Rare Earths, 14, N 3 (1996) 173-180

[9] I. Hernández, N. Pathumakanthar, P. B Wyatt, W. P. Gillin. Adv. Mater., 22, N 47 (2010) 5356-5360

[10] W. E. I. Xiantao, Z. H. A. O. Jiangbo, W. Zhang, L. I. Yong, Y. I. N. Min. J. Rare Earth, 28, N 2 (2010) 166–170

[11] N. Yamada, S. Shionoya, T. Kushida. J. Phys. Soc. Jpn, 32, N 6 (1972) 1577-1586

[12] X. Wang, C. S. Liu, T. Yu, X. Yan. Phys. Chem. Chem. Phys., 16, N 26 (2014) 13440-13446

[13] P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, A. Meijerink. Phys. Rev. B, 71, N 1 (2005) 014119

[14] R. T. Wegh, H. Donker, K. D. Oskam, A. Meijerink. Science, 283, N 5402 (1999) 663-665

[15] B. M. van der Ende, L. Aarts, A. Meijerink. Adv. Mat., 21, N 30 (2009) 3073-3077

[16] F. Auzel, D. Meichenin, F. Pellé, P. Goldner. Opt. Mater., 4, N 1 (1994) 35-41

[17] G. F. Brown, J. Wu. Laser & Photon. Rev., 3, N 4 (2009) 394-405

[18] B. S. Richards. Sol. Energy Mater. & Sol. Cells, 90, N 9 (2006) 1189-1207

[19] L. A. Riseberg, H. W. Moos. Phys. Rev., 174, N 2 (1968) 429

[20] J. L. Adam. J. Non-Cryst. Sol., 287, N 1 (2001) 401-404

[21] C. Li, J. Lin. J. Mater. Chem., 20, N 33 (2010) 6831-6847

[22] J. Lucas, F. Smektala, J. L. Adam. J. Fluor. Chem., 114, N 2 (2002) 113-118

[23] P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, A. A. Kornienko, E. B. Dunina, A. S. Yasu-

kevich, K. V. Yumashev. J. Non-Cryst. Sol., 392-393 (2014) 39-44

[24] P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, K. V. Yumashev. Glass Ceram., 71, N 1-2 (2014) 41-44

[25] P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, K. V. Yumashev. Opt. Spectr., 118, N 2 (2015) 235-239

[26] G. E. Rachkovskaya, P. A. Loiko, N. A. Skoptsov, G. B. Zakharevich, K. V. Yumashev. Glass Ceram., 71, N 7-8 (2014) 266-269

[27] D. L. Dexter. Phys. Rev., 126, N 6 (1962) 1962-1967

[28] А. А. Киприанов, Н. Г. Карпухина. Физика и химия стекла, 32, № 1 (2006) 3-40

[29] E. M. Rabinovich. Phys. Chem. Glass., 24, N 2 (1983) 54-56

[30] A. Meijerink, R. Wegh, P. Vergeer, T. Vlugt. Opt. Mater., 28, N 6 (2006) 575-581

[31] Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, X. Zhang, J. Am. Ceram. Soc., 95, N 3 (2012) 1042-1047

[32] Y. Dwivedi, S. C. Zilio. Opt. Express, 21, N 4 (2013) 4717-4727