(19) **SU**(11) 1154360 A

4(51) C 22 C 37/08; C 22 C 37/10

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3700815/22-02

(22) 09.02.84

(46) 07.05.85. Бюл. № 17

(72) Л.Л. Счисленок, Д.Н. Худокормов, С.Н. Леках, М.М. Бондарев, А.Ф. Клавсуть, А.В. Безлепкин, Т.С. Хитрун, В.И. Чукур и А.Е. Шишкин

(71) Белорусский ордена Трудового Красного Знамени политехнический институт

(53) 669.15-018.2(088.8)

(56) 1. Авторское свидетельство СССР № 550453, кл. С 22 С 37/10, 1975.

2. Авторское свидетельство СССР
№ 587171, кл. С 22 С 37/10, 1976.
(54)(57) ВЫСОКОПРОЧНЫЙ ЧУГУН, содержащий углерод, кремний, марганец,
хром, никель, медь, магний, кальций,
барий, редкоземельные металлы и же-

лезо, отличающийся тем, что, с целью повышения ударной вязкости при сохранении прочности в литом состоянии, он содержит компоненты в следующем соотношении, мас. %:

Углерод	3,1-3,7
Кремний	2,1-3,2
Марганец	0,2-0,6
Хром	0,05-0,2
Никель	0,05-0,4
Медь	0,05-0,5
Магний	0,04-0,075
Кальций	0,001-0,01
Барий	0,001-0,01
Редкоземель-	
ные метал-	•
лы	0,001-0,02
Железо	Остальное

5U (ii) 1154360

Изобретение относится к металлургии, а именно к составам железотуглеродистых сплавов, и может быть использовано для изготовления ответственных тонкостенных деталей сельхозмашин, в частности стойка плуга, кольчато-шпоровый диск, к которым предъявляются повышенные требования по прочностным характеристикам, так как они испытывают в процессе экстлуатации динамические удары.

Известен чугун [1] следующего химического состава, мас. %: Углерод 2,6-4,5 Кремний 1,0-4,0 0, 1-1, 2Марганец 0,01-0,5Хром Никель 0,01-1,0Медъ 0,01-1,0Магний 0,015-0,10,015-0,06 Кальций Редкоземельные 0.005 - 0.15металлы 0.005 - 0.4Алюминий Железо Остальное

Данный чугун обладает высокими механическими свойствами, но склонен к отбелу, не обеспечивает требуемото уровня стабильности свойств при эксплуатации деталей в условиях динамических нагрузок.

Наиболее близким к изобретению по технической сущности и достигае-мому результату является высокопрочный чугун [2], содержащий ингредиенты в следующем соотношении, мас. %:

Углерод	3,0-3,8
Кремний	2,4-3,2
Марганец	0,2-0,45
Хром	0,02-0,065
Никель	0,5-1,5
Медь	1,0-1,5
Магний	0,02-0,08
Кальций	0,005-0,15
Барий	0,001-0,1
Редкоземель-	•
ные металлы	0,001-0,1
Молибден	0,2-0,5
Олово	0,035-0,25
Железо	Остальное
качестве приме	сей чугун содержит,
c.% :	

Фосфор 0,01-0,06 Сера 0,001-0,01

В

ма

Известный сплав обладает достаточно высокими прочностными характеристиками и за счет содержания магния, бария и кальция обеспечивает получение шаровидной формы графита в отливках с толщиной стенки не менее 20 мм. Однако в широко распространенных тонкостенных отливках с толщиной стенки менее 20 мм он не обеспечивает достаточной ударной вязкости за счет чрезвычайно высокого уровня легирования карбидообразующими элементами (Cr, Mo, Sn и т.д.). Данные концентрации элементов не обеспечивают получение от-

тов не обеспечивают получение отливок с сечением до 10 мм без структурно-свободного цементита, что ухудшает обрабатываемость отливок.

15 Цель изобретения - повышение ударной вязкости при сохранении прочности в литом состоянии.

Указанная цель достигается тем, что чугун, содержащий углерод, крем-ний, марганец, хром, никель, медь, магний, кальций, барий, редкоземельные металлы и железо, содержит компоненты в следующем соотношении, мас. %:

. 23	, Углерод	3,1-3,7
	Кремний	2,1-3,2
	Марганец	0,2-0,6
	Хром	0,05-0,2
20	Никель	0,05-0,4
30	Медь	0,05-0,5
	Магний	0,04-0,075
	Кальций	0,001-0,01
	Барий	0,001-0,01
	Редкоземель-	
35	ные металлы	0,001-0,02
•	Железо	Остальное

Пределы содержания компонентов установлены, исходя из благоприятного сочетания структуры и свойств чугуна. Нижний предел по содержанию углерода 3,1 мас. % и кремния 2,1 мас. % ограничен получением структуры без метастабильной автоматики. Верхний (углерод 3,7 мас. %, кремний - 3,2 мас. %) ограничен ввиду дальнейшего охрупчивания сплава (образование силикокарбидов и легированного феррита). Нижний предел по содержанию марганца (0,2 мас. %), хрома (0,05 мас. %), нигеля

(0,05 мас. %), меди (0,05 мас. %) обеспечивает получение сплава с высокими прочностными характеристиками при минимальной степени легитиками при минимальной степени легитрования чугуна. Наличие марганца более 0,6 мас. % приводит к появлению цементита в структуре тонкостенных отливок, что отрицательно

сказывается на свойствах чугуна. Повышенная концентрация никеля и меди выше 0.4 мас. % и 0.5 мас. % соответственно не дает значительного эффекта в данных сечениях отливок и экономически нецелесообразно. Предельная концентрация хрома 0,2 мас. % установлена из необходимости исключения отбела в отливках.

Нижние пределы содержания магния (0,04 мас.%), кальция (0,001 мас.%) бария (0,001 мас.%), редкоземельных металлов (0,001 мас. %) обусловлен необходимостью получения шаровидной формы графита в отливках с содержанием серы в исходном расплаве свыше 0.02 мас. 7. Верхний предел по содержанию магния (0,075 мас. %) и редкоземельных металлов (0,02 мас.%) ограничен ввиду ухудшения формы графита при больших концентрациях (эффект "перемодифицирования"). Добавки кальция свыше 0.01 мас. 7 приводят к ухудшению уларной вязкости и снижению прочностных свойств чугуна. Верхнее содержание бария (0,01 мас.%) ограничено экономическими соображениями, а также последующим малым приростом достигаемого положительного эффекта. 30

Пример. Для изучения структуры и свойств и проведения сравни-

тельных испытаний выплавляют чугуны известного и предлагаемого составов (табл. 1). Плавка чугунов производится в 60-килограммовой индукционной печи с кислой футеровкой.

Содержание примесей серы в исходном расплаве составляет 0.04 мас. %. После перегрева до температуры 1450°C чугун модифицируется в ковше: редкоземельными металлами, силикокальцием, вводят также электролитический никель, медь и затем в форме - железокремниймагниевой лигатурой с содержанием (магния 7-9 мас. %) в количестве 1,8-2,0 мас. %.

Расчет производят исходя из усвоения Са, Мg, Ва и РЗМ 30, 70, 40, 40% соответственно, остальное (тугоплавкие) усваиваются в среднем на 95%. Образцы для механических испытаний вырезаются из комплексной пробы, включающей ступенчатую плиту с толшиной стенок 10-30 мм.

Предлагаемый состав чугуна целесообразно использовать для изготовления тонкостенных деталей сельсхозмашин, например стойка плуга, кольчато-шпоровый диск.

Экономический эффект от внедрения предлагаемого объекта составит 820 тыс.руб.

Таблица

	•				, a o	J. 11 L. L.	•
Hamana		Химих	ческий со	став,мас	.%		
Чугун	С	Si	Мn	Cr	Ni	Cu	
Известный	3,4	2,8	0,32	0,042	0,32	1,2	
Предлагае- мый	3,7	2,1	0,2	0,05	0,05	0,05	
	3,4	2,6	0,4	0,12	0,22	0,27	
	3,1	3,2	0,6	0,2	0,4	0,5	٠.
	3,1	2,1	0,2	0,03	0,03	0,04	•.
	3,7	3,2	0,6	0,25	0,30	0,55	

25

Чугун !			Химически	й состав,	мас.%	
	Mg	Ca	Ba	РЗМ	Мо	Sn
Известный	0,05	0,022	0,05	0,05	0,35	0,122
Предлагае- мый	0,04	0,001	0,001	0,001	-	-
	0,057	0,005	0,005	0,01		
	0,075	0,01	0,01	0,02	-	-
	0,035	0,001	0,001	0,001	-	-
•	0,08	0,01	0,01	0,02	<u> </u>	-

				T	абл	ица 2	
Чугун [^]	Механические свойства в отливках с толщиной стенки, мм						
		30		100			
	G _B , кгс/мм ²	нв	а _к , кгм/см ²	G _B , κrc/mm ²	НВ	a _k , krm/cm ²	
Известный	90	285	3,1	95	295	20	
Предлагае- мый	82	227	7,0	85	235	5,0	
	83,5	230	6,0	87	240	4,5	
· · · · · · · · · · · · · · · · · · ·	85	235	4,5	89	260	4,0	
	81,5	227	6,5	84	235	4,5	
· 	85	235	4,0	87	260	3,5	

Редактор Н.Тупиц	Составитель Г.Дудик а Техред Т.Маточка	Корректор	М.Максимишинец
Заказ 2638/26	Тираж 583 ВНИИПИ Государственного по делам изобретений 113035, Москва, Ж-35, Ра	и открытий	. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4