ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 3714805/22-02

(22) 09.02.84

(46) 30.12.85. Бюл. № 48

(71) Белорусский ордена Трудового Красного Знамени политехнический институт

(72) Е.И. Шитов, Л.Л. Счисленок,

В.Л. Трибушевский и В.И. Крумкач

(53) 669.15-018.2(088.8)

(56) Авторское свидетельство СССР № 3703258,кл. С 22 С 37/08, 20.02.84.

Авторское свидетельство СССР № 1154365, кл. С 22 С 37/08, 1973. (54)(57) ЧУГУН, содержащий углерод, кремний, марганец, молибден, никель.

хром, титан и железо, о т л и ч а ющ и й с я тем, что, с целью повышения эксплуатационных и технологических характеристик, он дополнительно содержит кальций при следующем соотношении компонентов, мас. %:

Углерод	2,8-3,2
Кремний	1,8-2,2
Марганец	0,005-0,04
Молибден	0,1-0,3
Никель	0,5-1,0
Хром	0,1-0,4
Титан	0,05-0,2
Кальций	0,001-0,02
Железо	Остальное

Изобретение относится к литейному производству, а именно к составам высокоуглеродистых сплавов железа, и может быть использовано для изготовления деталей, работающих в условиях кавитационной эрозии.

Целью изобретения является повышение эксплуатационных и технологических характеристик.

Указанная цель достигается тем, что чугун, содержащий углерод, кремний, марганец, молибден, никель, кром, титан и железо, дополнительно содержит кальций при следующем соотношении компонентов, мас. %:

Углерод	2,8-3,2
Кремний	1,8-2,2
Марганец	0,005-0,04
Молибден	0,1-0,3
Никель	0,5-1,0
Хром	0,1-0,4
Титан	0,05-0,20
Кальций	0,001-0,02
Железо	Остальное

Наличие в чугуне одновременно никеля и хрома измельчает включения графита и способствует равномерному расположению их в металлической основе.
Титан легирует структурные составляющие чугуна. Кальций очищает границы
эвтектических зерен. Изменение структуры, вызванное наличием в расплаве
никеля, хрома и титана, и дополнительные введения кальция благоприятно сказываются на повышении кавитационной стойкости чугуна при термической обработке.

Пример. Для изучения структуры и свойств чугуна предлагаемого состава и известного выплавляют материалы с различным уровнем содержания компонентов. Чугуны плавят в индукционной печи с кислой футеровкой. Образцы для испытаний отливают в сухую песчаную форму.

Химические составы чугунов и ре**зультаты** испытаний представлены в табл. 1 и 2.

Пределы содержания компонентов установлены, исходя из получения наиболее благоприятного сочетания структуры и свойств сплава. Нижний предел по содержанию углерода 2,8%, кремния - 1,8%. Верхний предел по содержанию молибдена 0,3% и хрома 0,4% вызван необходимостью получения структуры без включений карбидов. Верхний предел по содержанию углерода 3,2%, кремния 2,2% и марганца 0,04% ограничен ввиду образования феррита, количество которого не должно превышать 3%. Мини-15 мальное количество марганца 0.005%, молибдена 0,1%, никеля 0,5%, хрома 0,1%, титана 0,05% обеспечивает существенное повышение кавитационной стойкости материала при минимальной 20 степени легирования структуры.

Повышение содержания никеля более 1,0% и титана более 0,2% ухудшает жидкотекучесть чугуна, не влияя практически на его кавитационную стойкость. Концентрация кальция 0,001-0,02% выбрана экспериментально из условия снятия кромочного отбела в отливках, измельчения первичной структуры и рафинирования расплава.

Оптимальный состав чугуна содержит, %: углерод 3,0, кремний 2,0, марганец 0,02, молибден 0,2, никель 0,75, кром 0,25, титан 0,12, кальций 0,01.

Технология получения чугуна состоит из расплавления высокоуглеродистых окатышей, процесса науглероживания и введения ферросплава кремния (75% Si), молибдена (60% Мо), хрома (75% Сr), титана (45% Тi), электролитического никеля. Перед заливкой в ковш добавляют силикокальций (30% Са). Величина добавок рассиитывается исходя из среднего уровня усвоения кальция, никеля на уровне 90-95%, молибдена, хрома титана и кальция на уровне 80-90%.

0	Уровень		Химический состав, вес. Х												
Сплав содержания ингредиен- тов	1	Sí	Min	Мо	Ni	A1	Cr	P	Ti	Ca	Sb	S	Pb	٠	
Предлагаемый	Нижкий	2,8	1,8	0,005	0,1	0,5	-	0,1	•	0,05	0,001	-	, -	-	
	Средний	3,0	2,0	0,021	0,2	0,75		0,25	-	0,1	0,01	-		-	
	Верхний	3,2	2,2	0,04	0,3	1,0	-	0,4	: •	0,2	0,02	_	-	-	
	нике инже	2,7	1,8	0,005	0,1	0,03	- .	0,1	· •	0,03	0,001	-	-	, -	1201
· · ·	выше верхнего	3,4	2,2	0,04	0,3	1,0	-	0,4	• ;	0,25	0,025	-	<i>-</i> _	6	J 4 J
Известный[1]	Средяий	3,2	1,9	0,02	0,25	•	-	-	-	-	- 8	0,1	0,09	•	
[2]	_"-	3,2	2,2	0,021	0,25	1,5			,			0,075		•	
[4]	_n_	2,9	1,9	0,8	0,25	0,8	,	0,5		0,075			0,075		
[3]		3,2	6,0	0,02		2,0	1,0		0,08		0,01				

Относительная стойкость

Сплав

Та б	блица 2					
брабаты-	Склонность					
емость	к трещино-					
	образованию					
	разрушению					

		коррозионная	кавитационная	кучесть	ваемость	к трещино- образованию разрушению ребра толщи- ной, мм
Предлагаемы	й					
1		1,25	1,2	590	47	4
2		1,35	1,35	610	58	4
3		1,45	1,40	570	53	4
4		0,9	1,0	530	4.1	4
5		1,45	1,4	510	49	6
Известный [1]	1,0	1,0	405	46	6
Ĺ	2)	1,01	1,03	450	41	4
[4]	1,19	1,11	. 490	45	6
	3	1,39	0,87	390	37,3	8

Составитель Г. Дудик
Редактор Л. Авраменко Техред И.Асталош Корректор С. Шекмар
Заказ 7965/25 Тираж 582 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филнал IIIII "Патент", г. Ужгород, ул. Проектная, 4