МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Техническая эксплуатация автомобилей»

К. В. Буйкус

ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ И ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ

Пособие для студентов специальностей 1-37 01 06 «Техническая эксплуатация автомобилей (по направлениям)» по направлению 1-37 01 06-01 «Техническая эксплуатация автомобилей (автотранспорт общего и личного пользования)» и 1-37 01 07 «Автосервис»

Минск БНТУ 2020 УДК 629.33.083:001.8(075.8) ББК 39.33я7 Б90

> Рецензенты: *Н. Н. Петюшев, В. С. Тарасенко*

Буйкус, К. В.

Б90 Основы научных исследований и инновационной деятельности: пособие для студентов специальностей 1-37 01 06 «Техническая эксплуатация автомобилей (по направлениям)» по направлению 1-37 01 06-01 «Техническая эксплуатация автомобилей (автотранспорт общего и личного пользования)» и 1-37 01 07 «Автосервис» / К. В. Буйкус. – Минск: БНТУ, 2020. – 46 с.

ISBN 978-985-583-539-5.

В пособии приведены содержание и порядок выполнения практических работ по дисциплине «Основы научных исследований и инновационной леятельности».

УДК 629.33.083:001.8(075.8) ББК 39.33я7

ISBN 978-985-583-539-5

© Буйкус К. В., 2020

© Белорусский национальный технический университет, 2020

СОДЕРЖАНИЕ

Практическая работа № 1 Проверка однородности результатов экспериментов	4
Практическая работа № 2 Нормальный закон распределения в задачах технической эксплуатации автомобилей	8
Практическая работа № 3 Логарифмически нормальный закон распределения в задачах технической эксплуатации автомобилей	15
Практическая работа № 4 Закон распределения Вейбулла в задачах технической эксплуатации автомобилей	20
Практическая работа № 5 Показательный закон распределение в задачах технической эксплуатации автомобилей	26
Практическая работа № 6 Гамма-распределение в задачах технической эксплуатации автомобилей	30
Практическая работа № 7 Использование двухфакторной корреляционной модели в задачах технической эксплуатации автомобилей	34
Практическая работа № 8 Подбор эмпирических зависимостей	40
Список использованной литературы	46

Практическая работа № 1 ПРОВЕРКА ОДНОРОДНОСТИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ

Цель работы: изучение основных методов проверки однородности результатов экспериментов в задачах технической эксплуатации автомобилей.

Общие сведения

В процессе обработки экспериментальных данных следует исключить грубые ошибки ряда. Известно несколько методов определения грубых ошибок статистического ряда.

Правило трех сигм – разброс случайных величин от среднего значения не должен превышать значения трех среднеквадратичных отклонений:

$$x_{\min,\max} = \overline{x} \pm 3\sigma. \tag{1.1}$$

Метод доверительного интервала.

Критерии появления ошибок вычисляют по формулам

$$\beta_1 = \frac{\left(x_{\text{max}} - \overline{x}\right)}{\sigma\sqrt{\frac{N-1}{N}}},\tag{1.2}$$

$$\beta_2 = \frac{\left(\overline{x} - x_{\min}\right)}{\sigma\sqrt{\frac{N-1}{N}}},\tag{1.3}$$

где x_{\max} , x_{\min} — наибольшее и наименьшее значения из N измерений; σ — среднеквадратическое отклонение

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}.$$
(1.4)

В табл. 1.1 приведены максимальные значения β_{max} , возникающие вследствие статистического разброса, в зависимости от доверительной вероятности p_{π} .

Таблица 1.1 Критерий появления грубых ошибок β_{max}

N	ſ	3 _{max} при <i>р</i>	д	N	eta_{max} при $p_{\scriptscriptstyle extsf{ iny I}}$				
14	0,90	0,95	0,99	- '	0,90	0,95	0,99		
3	1,41	1,41	1,41	15	2,33	2,49	2,80		
4	1,64	1,69	1,72	16	2,35	2,52	2,84		
5	1,79	1,87	1,96	17	2,38	2,55	2,87		
6	1,89	2,00	2,13	18	2,40	2,58	2,90		
7	1,97	2,09	2,26	19	2,43	2,60	2,93		
8	3,04	2,17	2,37	20	2,45	2 62	2,96		
9	2,10	2,24	2,46	25	2,54	2,72	3,07		
10	2,15	2,29	2,54	30	2,61	2,79	3,16		
11	2,19	2,34	2,61	35	2,67	2,85	3,22		
12	2,23	2,39	2,66	40	2,72	2,90	3.28		
13	2,26	2,43	2,71	45	2,76	2,95	3,33		
14	2,30	2,46	2,76	50	2,80	2,99	3,37		

Если $\beta_1 > \beta_{\text{max}}$, то значение x_{max} необходимо исключить из ряда как грубую погрешность; при $\beta_2 > \beta_{\text{max}}$ исключается величина x_{min} . После исключения грубых ошибок определяют новые значения \overline{x} и σ .

Метод критерия В. И. Романовского.

Выбрав доверительную вероятность $p_{\rm д}$, по табл. 1.2, в зависимости от N, определяют коэффициент q.

Вычисляют предельно допустимую абсолютную ошибку отдельного измерения

$$\varepsilon_{\rm np} = \sigma q.$$
(1.5)

Если $|\overline{x} - x_{\max}| > \varepsilon_{\text{пр}}$, то измерение x_{max} исключают из ряда наблюдений.

Коэффициент для вычисления предельно допустимой ошибки измерения q

N		p	д	
I V	0,95	0,98	0,99	0,995
5	3,04	4,10	5,04	9,43
6	2,78	3,64	4,36	7,41
7	2,62	3,36	3,96	6,37
8	2,51	3,18	3,71	5,73
9	2,43	3,05	3,54	5,31
10	2,37	2,96	3,41	5,01
12	2,29	2,83	3,23	4,62
14	2,24	2,74	3,12	4,37
16	2,20	2,68	3,04	4,20
18	2,17	2,64	3,00	4,07
20	2,15	2,60	2,93	3,98

Порядок выполнения работы

1. Значения экспериментальных измерений взять из табл. 1.3 согласно номеру варианта.

Таблица 1.3

Таблица 1.2

D		
Варианты	исходных	данных

	№ варианта												
1	2 3 4 5 6 7							9	10				
16,90	0,42	0,47	0,43	1,32	1,14	112,49	0,66	1,51	6,94				
17,74	0,61	0,56	0,42	1,24	1,08	105,80	0,56	1,34	8,14				
20,56	0,46	0,49	0,48	1,23	1,18	108,92	0,43	1,36	7,00				
16,42	0,51	0,55	0,43	1,06	1,51	136,19	0,54	0,94	7,52				
15,70	0,66	0,55	0,61	1,12	1,45	130,16	0,54	1,39	7,71				
20,62	0,52	0,68	0,43	0,97	1,30	129,32	0,62	0,97	10,55				
19,14	0,59	0,49	0,67	0,95	1,31	109,49	0,66	1,30	6,47				

Окончание табл. 1.3

	№ варианта												
1	2	3	4	5	6	7	8	9	10				
16,62	0,65	0,61	0,61	1,05	1,37	137,51	0,58	1,27	6,43				
17,93	0,45	0,48	0,65	1,09	1,15	83,17	0,48	1,41	9,18				
18,03	0,50	0,62	0,42	0,96	1,28	135,27	0,50	1,05	7,03				
19,25	0,68	0,40	0,65	1,41	1,46	89,83	0,47	1,44	6,74				
19,77	0,53	0,57	0,68	1,36	1,36	104,92	0,56	0,96	6,13				
18,58	0,66	0,49	0,41	1,19	1,30	84,67	0,67	1,19	5,04				
20,84	0,44	0,54	0,50	1,25	1,15	83,72	0,61	1,21	6,00				
20,68	0,39	0,68	0,66	1,21	1,17	124,64	0,51	1,44	9,12				
17,03	0,46	0,58	0,53	1,36	1,38	114,08	0,56	1,08	8,10				
21,31	0,52	0,48	0,55	0,99	1,16	134,81	0,56	1,14	10,86				
14,27	0,63	0,54	0,59	1,18	1,35	126,11	0,49	1,14	4,15				
17,71	0,58	0,48	0,68	1,42	1,32	136,23	0,48	1,15	7,35				
20,68	0,63	0,48	0,46	1,44	1,06	115,05	0,42	0,94	8,96				

- 2. Определить среднеквадратическое отклонение σ.
- 3. Проверить выборку на наличие грубых ошибок с помощью:
- правила 3σ;
- критерия β_{max} ;
- критерия Романовского q;
- 4. Сравнить полученные результаты, сделать соответствующие выводы.

Практическая работа № 2

НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ В ЗАДАЧАХ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ АВТОМОБИЛЕЙ

Цель работы: изучение основных характеристик и особенностей применения нормального распределения случайных величин в задачах технической эксплуатации автомобилей.

Общие сведения

Нормальное распределение, называемое также законом Гаусса, широко применяется при исследовании эффективности функционирования транспортных средств.

Имея выборку из случайных величин (CB), установить математический закон, которому подчиняются эти CB, можно путем проверки правдоподобности гипотезы о принадлежности CB к одному из законов.

Рассмотрим данную методику на примере использования *нор-мального распределения*.

Имеется статистический ряд CB наработки до отказа подвески автомобиля MA3: $L_{\rm max}=80~000$ км, $L_{\rm min}=40~000$ км. Зафиксировано N=400 наблюдений.

- 1. Группируем значения в 10 интервалах (k = 10).
- 2. Заготавливаем статистическую таблицу (табл. 2.1).

Таблица 2.1

Статистическая таблица

Номер		Номер интервала k_i										
строки	1	2	3	4	5	6	7	8	9	10		
	Границы интервалов											
1	40	44	48	52	56	60	64	68	72	76		
	44	48	52	56	60	64	68	72	76	80		
2		Опы	тное ко	личест	гво поп	аданий	і СВ в і	интерва	ал n_i^*			
2	8	16	36	48	60	72	65	50	35	10		
3				Опі	ытные	частоть	ы m_i					
3	0,02	0,02 0,04 0,09 0,12 0,15 0,18 0,16 0,13 0,09 0,03										
4		Ста	тистич	еская (рункци	я распј	ределе	ния $F(x)$	·)			
4	0,02	0,06	0,15	0,27	0,42	0,60	0,76	0,89	0,98	1,01		

Номер		Номер интервала k_i											
строки	1	2	3	4	5	6	7	8	9	10			
5	Teop	Теоретические вероятности попадания случайной величины P_i											
3	0,023	023 0,042 0,08 0,126 0,165 0,178 0,156 0,113 0,104 0,013											
6	,	Георет	ическо	е колич	нество	попада	ний СЕ	В в инте	ервал п	i			
6	9,2	16,8	30,6	49,6	64,8	69,4	61,6	45,2	27,2	17,2			
7		Слагаемые критерия Пирсона											
/	0,21	0,01	0,95	0,05	0,36	0,1	0,18	0,51	2,24	3,01			

- 3. Определяем число попаданий опытных точек в каждый интервал n_i^* (строка № 2 табл. 2.1).
- 4. Вычисляем опытные частоты попадания СВ в каждом из интервалов (строка № 3 табл. 2.1):

$$m_i^* = \frac{n_i^*}{N}. (2.1)$$

5. На основании вычисленных данных строим гистограмму распределения опытных частот попадания СВ в интервалы (рис. 2.1).

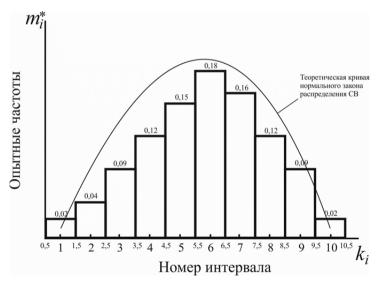


Рис. 2.1. Гистограмма распределения опытных частот попадания СВ в интервалах

Сравнивая внешний вид теоретической кривой с гистограммой экспериментальных данных, выдвигаем гипотезу о нормальном распределении СВ.

- 6. Вычисляем статистическую функцию распределения для F(x) (строка № 4 табл. 2.1).
- 7. Вычисляем общее статистическое математическое ожидание наработки до отказа (по интервалам гистограммы):

$$M^*(x) = \sum_{i=1}^k k_i m_i^*.$$
 (2.2)

8. Вычисляем статистическую дисперсию:

$$D^{*}(x) = \sum_{i=1}^{k} k_{i}^{2} m_{i}^{*} - (M^{*}(x))^{2}.$$
 (2.3)

Несмещенное значение среднеквадратического отклонения:

$$\sigma_x^* = \sqrt{\frac{k}{k-1} \left(D^*(x)\right)}.$$
 (2.4)

9. Вычисляем с помощью табличной функции Лапласа теоретические вероятности показания СВ в интервале (табл. 2.2) (строка № 5 табл. 2.1):

$$P(a < x < b) = \frac{1}{2} \left[\Phi_{o} \left(\frac{b - M^{*}(x)}{\sigma_{x}^{*}} \right) - \Phi_{o} \left(\frac{a - M^{*}(x)}{\sigma_{x}^{*}} \right) \right], \quad (2.5)$$

где a и b — значения начала и конца интервалов центрированной СВ по рис. 2.1 (например, для первого интервала a = 0,5 и b = 1,5).

Значения функции распределения Лапласа $\Phi_0(t)$ нормального закона для нормированной и центрированной CB

+	Сотые доли <i>t</i>									
t	0	1	2	3	4	5	6	7	8	9
0,0	398	398	398	398	398	398	398	398	397	397
0,1	397	396	396	395	395	394	393	393	392	391
0,2	391	390	389	388	387	386	385	384	383	382
0,3	381	380	379	377	376	375	373	372	171	369
0,4	368	366	365	363	362	360	358	357	355	353
0,5	352	350	348	346	344	342	341	339	337	335
0,7	333	331	329	327	325	323	320	318	316	314
0,8	312	310	307	305	303	301	298	296	294	292
0,9	289	287	285	282	280	278	275	273	270	268
1,0	266	263	261	258	256	254	251	249	246	244
1,1	242	239	237	234	232	229	227	225	222	220
1,2	217	215	213	380	208	205	203	201	198	196
1,3	194	191	189	366	184	182	180	178	175	173
1,4	171	169	166	164	162	160	158	156	153	151
1,5	149	147	145	143	141	139	137	135	133	131
1,6	129	127	125	123	121	120	118	116	114	112
1,7	110	109	107	105	104	102	100	098	097	095
1,8	094	092	090	089	087	086	084	083	081	080
1,9	079	077	076	074	073	072	070	069	068	066
2,0	065	064	063	062	060	059	058	057	056	055
2,1	044	043	042	041	040	039	037	037	037	036
2,2	035	034	033	033	032	031	031	030	029	029
2,3	028	027	027	026	025	025	024	024	023	029
2,4	022	021	021	020	020	019	019	018	018	018
2,5	017	017	016	016	015	015	015	014	014	013
2,6	013	013	012	012	012	011	011	011	011	010
2,7	010	010	009	009	009	009	008	008	008	008
2,8	007	007	007	007	007	006	006	006	006	006
2,9	006	005	005	005	005	005	005	004	004	004
3,0	004	004	004	003	003	003	003	003	003	003

Таблица 2.2

10. Находим теоретические числа попадания случайных точек в интервале (строка № 6 табл. 2.1):

$$n_i = P_i N. (2.6)$$

11. Вычисляем слагаемые критерия Пирсона (строка № 7 табл. 2.1):

$$\frac{\left(n_i^* - n_i\right)^2}{n_i}. (2.7)$$

12. Значение критерия Пирсона:

$$\chi^2 = \sum_{i=1}^k \frac{\left(n_i^* - n_i\right)^2}{n_i}.$$
 (2.8)

13. Проверяем правдоподобность гипотезы о принадлежности опытных данных к нормальному закону с помощью критерия Пирсона (табл. 2.3).

Число степеней свободы:

$$\eta = k - s,$$
(2.9)

где s – число независимых условий (наложенных связей):

- а) сумма вероятностей равна 1;
- б) совпадение теоретического и статистического средних значений;
- в) совпадение теоретической и статистической дисперсий.

Таким образом, s = 3.

Заданный (допустимый) уровень значимости $\alpha = 0.05$.

При $P(\chi^2, \eta) > \alpha$ гипотеза не отвергается.

14. Проверяем правдоподобность гипотезы о принадлежности опытных данных нормальному распределению с помощью критерия Романовского:

$$r = \frac{\chi^2 - \eta}{\sqrt{2\eta}}.\tag{2.10}$$

При r < 3 гипотеза не отвергается.

Значения критических вероятностей $P(\chi^2, \eta)$ квантилей критерия Пирсона, вычисленные в зависимости от опытного значения χ^2 и числа степеней свободы η

χ^2		Число степеней свободы η											
χ	2	3	4	5	6	7	8	10	12				
1	606	801	909	962	985	994	998	999	9999				
2	367	572	735	849	919	959	981	996	999				
3	223	391	557	700	808	885	934	981	995				
4	135	261	406	549	676	779	857	947	983				
5	082	171	287	415	543	660	757	891	958				
6	049	111	199	306	423	539	647	815	916				
7	030	071	135	220	320	428	536	725	857				
8	018	046	091	156	238	332	433	629	758				
9	011	029	061	109	173	252 .	342	532	702				
10	006	018	040	075	124	188	265	440	616				
11	004	011	026	051	088	138	201	357	528				
12	002	007	017	034	062	100	151	285	445				
13	001	004	011	023	043	072	111	223	369				
14		002	007	014	029	051	081	173	300				
15		001	004	010	020	036	059	132	241				
16		001	003	006	013	015	042	099	191				
17			001	004	009	017	030	074	149				
18			001	002	006	012	021	055	115				
19				001	004	800	014	040	088				
20				001	002	005	010	029	067				
21					001	003	007	021	050				
22					001	002	004	015	037				
23						001	002	004	015				
24						001	002	007	020				
25							001	005	015				
26							001	003	010				

Таблица 2.3

Порядок выполнения работы

- 1. Заготовить форму статистической таблицы (табл. 2.1).
- 2. Выполнить перестановку в строке № 2 табл. 2.1 согласно варианту (табл. 2.4).
- 3. Вычислить основные числовые характеристики распределения и заполнить таблицу.
- 4. Проверить правдоподобность гипотезы о принадлежности опытных данных к нормальному распределению по критериям Пирсона и Романовского.

Таблица 2.4 Варианты плана перестановки значений

Номер варианта	Перестановка	Номер варианта	Перестановка
1	1-2	19	3-7
2	1-3	20	3-8
3	1-4	21	3-9
4	1-5	22	4-5
5	1-6	23	4-6
6	1-7	24	4-7
7	1-8	25	4-8
8	1-9	26	4-9
9	2-3	27	5-6
10	2-4	28	5-7
11	2-5	29	5-8
12	2-6	30	5-9
13	2-7	31	6-7
14	2-8	32	6-8
15	2-9	33	6-9
16	3-4	34	7-8
17	3-5	35	7-9
18	3-6	36	8-9

Практическая работа № 3

ЛОГАРИФМИЧЕСКИ НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ В ЗАДАЧАХ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАПИИ АВТОМОБИЛЕЙ

Цель работы: изучение основных характеристик и особенностей, методики и навыков применения логарифмически нормального распределения случайных величин в задачах технической эксплуатации автомобилей

Общие сведения

Логарифмически нормальный закон распределения СВ находит применение в задачах по технической эксплуатации автомобилей при исследовании ресурсов деталей, узлов и механизмов автомобилей, периодичности ослабления крепежных соединений на автомобиле, продолжительности выполнения трудовых воздействий исполнителями технического обслуживания и отдельных профилактических операций и т. д.

Логарифмически нормальный закон распределения возникает в том случае, когда логарифм случайной величины распределен нормально.

Рассмотрим методику применения логарифмически нормального закона распределения на конкретном примере.

Имеется статистический ряд CB наработки до отказа карданных валов автомобиля MA3: $L_{\rm max}=170~000$ км, $L_{\rm min}=40~000$ км. Зафиксировано N=95 наблюдений.

Требуется проверить правдоподобность гипотезы о логарифмически нормальном распределении пробега до отказа карданных валов MA3 при уровне значимости $\alpha = 0.05$.

- 1. Группируем значения в 12 интервалах (k = 12).
- 2. Масштабируем СВ умножением на коэффициент, равный 0,1.
- 3. Заготовим статистическую таблицу (табл. 3.1).
- 4. Вычисляем по формуле (2.1) статистические поинтервальные частоты попадания случайной величины в интервалы (строка № 4 табл. 3.1), на основе данной информации строим полигон. Выдвигаем гипотезу о возможности описания пробега до отказа карданных валов логарифмически нормальным распределением.

5. Вычисляем значения натуральных логарифмов для середин интервалов (строка № 5 табл. 3.1):

$$ln x_i = 2,3 lg x_i.$$
(3.1)

6. Вычисляем статистическое математическое ожидание и дисперсию СВ:

$$M^*(\ln x) = \sum_{i=1}^k \ln x_i m_i^*,$$
 (3.2)

$$D^*(\ln x) = \sum_{i=1}^k \ln x_i^2 m_i^* - \left(M^*(\ln x)\right)^2.$$
 (3.3)

Несмещаемая оценка дисперсии и среднеквадратическое отклонение:

$$\tilde{D}(\ln x) = \frac{k}{k-1} D^*(\ln x), \tag{3.4}$$

$$\tilde{\sigma}(\ln x) = \sqrt{\tilde{D}(\ln x)}.$$
(3.5)

Таблица 3.1

Статистическая таблица

Номер	Номер интервала k_i											
строки	1	2	3	4	5	6	7	8	9	10	11	12
				Гран	ицы и	нтерв	ала, ті	ыс. км	1 × 10			
1	4,5	5,5	6,5	7,5	8,5	9,5	10,5	11,5	12,5	13,5	15,5	15,5
	5,5	6,5	7,5	8,5	9,5	10,5	11,5	12,5	13,5	14,5	15,5	16,5
2			C	ереди	ны ин	терва	лов x_i	тыс.	км × 1	10		
	5	6	7	8	9	10	11	12	13	14	15	16
3		C	пытн	ое кол	ичест	во по	падан	ийви	нтерв	алы п	* i	
3	2	11	10	16	10	13	8	9	7	3	4	2
4		Опытные частоты попаданий в интервалы m_i^*										
-	0,021	0,116	0,105	0,169	0,105	0,137	0,084	0,095	0,074	0,031	0,042	0,021

Номер					Ном	ер ин	терва	ла k_i				
строки	1	2	3	4	5	6	7	8	9	10	11	12
5		Нат	ураль	ный л	югари	іфм д.	пя сер	единь	і инте	рвала	lnx_i	
3	1,6	1,79	1,94	2,077	2,194	2,3	2,394	2,48	2,56	2,63	2,7	2,78
6			Це	нтрир	ованн	ая и н	юрми	рован	ная С	$\mathbf{B} t_i$		
U	2,04	1,41	0,92	0,47	0,09	0,26	0,57	0,85	2,12	1,34	1,57	1,83
7		Пло	тност	ъ цент	гриро	ванно	йинс	рмир	эванн	ой СВ	$f(t_i)$	
/	0,049	0,147	0,261	0,357	0,357	0,398	0,339	0,278	0,215	0,162	0,116	0,074
8				Пло	тност	ъ расі	предел	пения	$f(x_i)$			
0	0,028	0,080	0,122	0,146	0,144	0,130	0,101	0,076	0,054	0,038	0,025	0,015
9		Teo	ретич	еское	колич	нество	попа	даний	в инт	гервал	ы n_i	
9	2,68	7,6	11,6	12,9	13,7	12,4	9,59	7,22	5,13	3,5	2,4	1,4
10				Сла	гаемь	ле кри	терия	Пирс	она			
10	0,172	1,52	0,22	0,317	1	0,03	0,26	0,44	0,68	0,1	1,07	0,26

7. Вычисляем центрированные и нормированные значения СВ (строка № 6 табл. 3.1):

$$t_i = \frac{\ln x_i - M^* (\ln x)}{\tilde{\sigma}(\ln x)}.$$
 (3.6)

8. Находим плотности распределения $f(t_i)$ для центрированных и нормированных СВ, используя данные табл. 3.2 (строка № 7 табл. 3.1).

Таблица 3.2 Плотность распределения нормального закона для нормированной и центрированной CB $f(t_i)$

t					Сотые	доли <i>t</i>				
·	0	1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9	10	11
0,0	0,398	398	398	398	398	398	398	398	397	397
0,1	397	396	396	395	395	394	393	393	392	391
0,2	391	390	389	388	387	386	385	384	383	382
0,3	381	380	379	377	376	375	373	372	171	369

Окончание табл. 3.2

t					Сотые	доли <i>t</i>				
l '	0	1	2	3	4	5	6	7	8	9
0,4	368	366	365	363	362	360	358	357	355	353
0,5	352	350	348	346	344	342	341	339	337	335
0,6	333	331	329	327	325	323	320	318	316	314
0,7	312	310	307	305	303	301	298	296	294	292
0,8	289	287	285	282	280	278	275	273	270	268
0,9	266	263	261	258	256	254	251	249	246	244
1,0	242	239	237	234	232	229	227	225	222	220
1,1	217	215	213	380	208	205	203	201	198	196
1,2	194	191	189	366	184	182	180	178	175	173
1,3	171	169	166	164	162	160	158	156	153	151
1,4	149	147	145	143	141	139	137	135	133	131
1,5	129	127	125	123	121	120	118	116	114	112
1,6	110	109	107	105	104	102	100	098	097	095
1,7	094	092	090	089	087	086	084	083	081	080
1,8	079	077	076	074	073	072	070	069	068	066
1,9	065	064	063	062	060	059	058	057	056	055
2,0	054	052	051	050	049	048	047	046	045	044
2,1	044	043	042	041	040	039	037	037	037	036
2,2	035	034	033	033	032	031	031	030	029	029
2,3	028	027	027	026	025	025	024	024	023	029
2,4	022	021	021	020	020	019	019	018	018	018
2,5	017	017	016	016	015	015	015	014	014	013
2,6	013	013	012	012	012	011	011	011	011	010
2,7	010	010	009	009	009	009	800	008	008	008
2,8	007	007	007	007	007	006	006	006	006	006
2,9	006	005	005	005	005	005	005	004	004	004
3,0	004	004	004	003	003	003	003	003	003	003

Примечание. Все значения вероятностей меньше единицы, поэтому в таблице приведены лишь десятичные знаки, следующие после запятой, перед которыми при использовании таблицы нужно ставить ноль.

9. Вычисляем плотности распределения СВ (строка № 8 табл. 3.1):

$$f(x_i) = \frac{f(t_i)}{x_i \tilde{\sigma}(\ln x)}.$$
 (3.7)

10. Вероятности попадания в интервалы вычисляем по формуле

$$P(x_i) = f(x_i) \Delta x. \tag{3.8}$$

11. Вычисляем теоретические числа попаданий СВ в интервалы по формуле (строка \mathfrak{N}_{2} 9 табл. 3.1)

$$m_i = P_i N. (3.9)$$

- 12. Вычисляем составляющие критерия Пирсона по формуле (2.7) для каждого интервала (строка № 10 табл. 3.1). Значение критерия Пирсона определяют по формуле (2.8).
- 13. Проверяем правдоподобность гипотезы о принадлежности опытных данных к логарифмически нормальному закону с помощью критерия Пирсона (табл. 2.3).

Число степеней свободы определяют по формуле (2.9) при s = 3. При $P(\chi^2, \eta) > \alpha$ гипотеза не отвергается.

14. Проверяем правдоподобность гипотезы о принадлежности опытных данных логарифмически нормальному распределению с помощью критерия Романовского по формуле (2.10). При r < 3 гипотеза не отвергается.

Порядок выполнения работы

- 1. Заготовить форму статистической таблицы (табл. 3.1).
- 2. Выполнить перестановку в строке № 3 табл. 3.1 согласно варианту (табл. 2.4).
- 3. Вычислить основные числовые характеристики распределения и заполнить таблицу.
- 4. Проверить правдоподобность гипотезы о принадлежности опытных данных к логарифмически нормальному распределению по критериям Пирсона и Романовского.

Практическая работа № 4

ЗАКОН РАСПРЕДЕЛЕНИЯ ВЕЙБУЛЛА В ЗАДАЧАХ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ АВТОМОБИЛЕЙ

Цель работы: изучение основных характеристик и особенностей, методики и навыков применения распределения СВ Вейбулла в задачах технической эксплуатации автомобилей.

Общие сведения

Распределение Вейбулла находит применение при исследовании функционирования автомобилей и их элементов. Оно хорошо описывает постепенные отказы и отказы, вызванные старением.

Рассмотрим методику применения закона распределения Вейбулла на конкретном примере.

Имеется статистический ряд СВ наработки до отказа тормозной системы автомобилей МАЗ-5335: $L_{\rm max}=115000$ км, $L_{\rm min}=5000$ км. Зафиксировано N=79 наблюдений.

Требуется проверить правдоподобность гипотезы о распределении пробега до отказа тормозной системы автомобилей MA3-5335 по закону Вейбулла при уровне значимости $\alpha = 0.05$.

- 1. Группируем значения в 12 интервалах через $\Delta L = 10 \ (k = 12)$.
- 2. Заготавливаем статистическую таблицу (табл. 4.1).

Таблица 4.1

Пробег тормозной системы автомобилей МАЗ-5335 до отказа

Номер					Ho	мер ин	тервал	ıa k _i				
строки	1	2	3	4	5	6	7	8	9	10	11	12
					Граі	ницы и	нтерв	алов				
1	0	10	20	30	40	50	60	70	80	90	100	110
	10	20	30	40	50	60	70	80	90	100	110	120
2					Серед	цина иі	нтерва	лов L_i				
2	5	15	25	35	45	55	65	75	85	95	105	115
3			Опы	тное к	оличе	ство по	опадан	ий в и	нтерва	л n _i *		
3	9	14	18	7	9	9	4	4	2	1	1	1
4			Оп	ытные	часто	гы поп	адани	й в инт	ервал	m_i^*		
4	0,114	0,177	0,228	0,089	0,114	0,114	0,50	0,050	0,025	0,013	0,013	0,013

Номер					Ho	мер ин	тервал	ıa k _i				
строки	1	2	3	4	5	6	7	8	9	10	11	12
5				Вход	в стат	истиче	скую т	габлиц	$y L_i/a$			
3	0,125	0,375	0,625	0,875	1,120	1,370	1,630	1,870	2,120	2,360	2,630	2,880
6				Табл	ичные	значен	ния фу	нкции	af(L)			
O	0,560	0,718	0,670	0,576	0,470	0,340	0,230	0,160	0,110	0,080	0,050	0,040
7			Георет							1 1		
/	0,140	0,179	0,167	0,144	0,117	0,085	0,058	0,040	0,028	0,020	0,001	0,001
8			Teoper	гическ	ое кол	ичеств	о попа	дания	в инте	рвал п	i	
0	11,0	14,0	13,0	11,3	9,2	6,8	4,5	3,2	2,2	1,6	1,0	1,0
9				Сл	іагаем	ые кри	терия	Пирсо	на			-
9	0,363	0,000	1,920	1,63	0,040	0,740	0,055	0,200	0,018	0,220	0,000	0,000

- 3. Вычисляем по формуле (2.1) статистические интервальные частоты попаданий СВ в интервалы (строка № 4 табл. 4.1), на основе которых можем построить полигон. Рассматривая его, делаем предположение, выдвигаем гипотезу, что изучаемое явление пробег автомобиля до отказа тормозов распределено по закону Вейбулла.
- 4. Вычисляем статистическое математическое ожидание (генеральное среднее) пробега автомобиля до отказа тормозной системы:

$$M(L) = \sum_{i=1}^{k} L_i m_i. \tag{4.1}$$

Вычисляем статистическую дисперсию

$$D(L) = \sum_{i=1}^{k} L_i^2 m_i - (M(L))^2.$$
 (4.2)

Находим несмещенное значение дисперсии

$$\tilde{D}(L) = \frac{k}{k-1}D(L). \tag{4.3}$$

Находим коэффициент вариации

$$v = \frac{\sqrt{\tilde{D}(L)}}{M(L)}. (4.4)$$

По табл. 4.2 для коэффициента вариации ν находим значение первого параметра закона — параметра формы b.

Таблица 4.2 Зависимость между значениями коэффициентов вариации и параметром формы для закона Вейбулла

Коэффициент вариации v	Параметр формы <i>b</i>	Коэффициент вариации v	Параметр формы b
15,83	0,2	0,640	1,6
5,29	0,3	0,605	1,7
3,14	0,4	0,575	1,8
2,24	0,5	0,547	1,9
1,74	0,6	0,523	2,0
1,46	0,7	0,498	2,1
1,26	0,8	0,480	2,2
1,26	0,9	0,461	2,3
1,00	1,0	0,444	2,4
0,910	1,1	0,428	2,5
0,837	1,2	0,365	3,0
0,775	1,3	0,315	3,5
0,723	1,4	0,281	4,0
0,678	1,5	-	-

Находим второй параметр закона – параметр масштаба (табл. 4.3):

$$\mu = \frac{\Gamma\left(1 + \frac{1}{b}\right)}{\tilde{M}(L)}.$$
(4.5)

 $\label{eq:Tadinuta} \mbox{ Тad̄лицa 4.3}$ Знaчeния гaммa-функции Эйлера в зaвисимости от пaрaметра α

α	Γ(α)	α	Γ(α)	α	Γ(α)	α	Γ(α)
1,00	1,000	1,25	0,906	1,50	0,886	1,75	0,919
1,01	0,994	1,26	0,904	1,51	0,886	1,76	0,921
1,02	0,988	1,27	0,902	1,52	0,887	1,77	0,923
1,03	0,983	1,28	0,900	1,53	0,887	1,78	0,926
1.04	0,978	1,29	0,899	1,54	0,888	1,79	0,928
1.05	0,973	1,30	0,897	1,55	0,888	1,75	0,931
1.06	0,968	1,31	0,896	1,56	0,889	1,81	0,934
1.07	0,964	1,32	0,894	1,57	0,890	1,82	0,936
1.08	0,959	1,33	0,893	1,58	0,891	1,83	0,939
1.09	0,955	1,34	0,892	1,59	0,892	1,84	0,942
1,10	0,951	1,35	0,891	1,60	0,893	1,85	0,945
1,11	0,947	1,36	0,890	1,61	0,894	1,86	0,948
1,12	0,943	1,37	0,889	1,62	0,895	1,87	0,951
1.13	0,939	1,38	0,888	1,63	0,897	1,88	0,955
1.14	0,936	1,39	0,887	1,64	0,898	1,89	0,958
1.15	0,933	1,40	0,887	1,65	0,900	1,90	0,961
1.16	0,929	1,41	0,886	1,66	0,901	1,91	0,965
1.17	0,926	1,42	0,886	1,67	0,903	1,92	0,968
1.18	0,923	1,43	0,886	1,68	0,905	1,93	0,972
1.19	0,920	1,44	0,885	1,69	0,906	1,94	0,976
1,20	0,918	1,45	0,885	1,70	0,908	1,95	0,979
1,21	0,915	1,46	0,885	1,71	0,910	1,96	0,983
1,22	0,913	1,47	0,885	1,72	0,912	1,97	0,987
1.23	0,910	1,48	0,885	1,73	0,914	1,98	0,991
1.24	0,908	1,49	0,885	1,74	0,916	1,99	0,995
1.25	0,906	1,50	0,886	1,75	0,919	2,00	1,000

При этом значение, обратное параметру масштаба, составляет:

$$a = \frac{1}{\mu}.\tag{4.6}$$

5. Составляем входы в статистические таблицы L/a (строка № 5 табл. 4.1):

6. С помощью подученных входов для b находим (путем интерполяции) значения функции af(L) (табл. 4.4) и заполняем строку № 6 табл. 4.1.

Таблица 4.4 $\label{eq:2.1}$ Плотности распределения закона Вейбулла $\mathit{af}(L)$ в зависимости от параметров b и L/a

I /a						ĺ	<i>b</i>					
L/a	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0	3,0	4,0
0,1	0,67	1,06	1,17	1,08	0,90	0,71	0,53	0,39	0,28	0,19	0,03	0,00
0,2	0,35	0,62	0,78	0,83	0,81	0,75	0,66	0,56	0,47	0,38	0,11	0,03
0,3	0,24	0,44	0,59	0,69	0,74	0,74	0,72	0,67	0,61	0,55	0,26	0,10
0,4	0,18	0,34	0,48	0,59	0,67	0,71	0,73	0,73	0,71	0,68	0,45	0,2.5
0,5	0,15	0,28	0,40	0,51	0,60	0,67	0,73	0,76	0,78	0,78	0,66	0,47
0,6	0,12	0,24	0,35	0,46	0,55	0,63	0,67	0,75	0,80	0,83	0,87	0,76
0,7	0,10	0,21	0,31	0,40	0,50	0,58	0,66	0,73	0,79	0,85	1,04	1,08
0,8	0,09	0,18	0,27	0,36	0,45	0,53	0,61	0,69	0,77	0,84	1,15	1,35
0,9	0,08	0,16	0,25	0,33	0,40	0,49	0,56	0,64	0,72	0,80	1,17	1,51
1,0	0,07	0,15	0,22	0,29	0,37	0,44	0,51	0,58	0,66	0,73	1,10	1,47
1,1	0,07	0,13	0,20	0,27	0,33	0,40	0,47	0,531	0,59	0,65	0,96	1,23
1,2	0,06	0,12	0,18	0,24	0,30	0,36	0,411	0,47	0,52	0,59	0,77	0,87
1,3	0,06	0,11	0,17	0,22	0,27	0,32	0,37	0,41	0,45	0,48	0,56	0,50
1,4	0,05	0,10	0,15	0,20	0,27	0,29	0,33	0,35	0,38	0,39	0,38	0,24
1,5	0,05	0,10	0,14	0,18	0,22!	0,26	0,28	0,30	0,31	0,32	0,23	0,08
1,6	0,05	0,09	0,13	0,17	0,20	0,23	0,24	0,25	0,25	0,25	0,13	0,02
1,7	0,04	0,08	0,13	0,16	0,18	0,20	0,21	0,21	0,20	0,19	0,06	0,00
1,8	0,04	0,08	0,11	0,14	0,16	0,18	0,18	0,17	0,16	0,14	0,02	0,00
1,9	0,04	0,07	0,10	0,13	0,15	0,16	0,15	0,14	0,13	0,10	0,01	0,00
2,0	0,04	0,07	0,10	0,12	0,13	0,14	0,13	0,12	0,09	0,07	0,00	0,00
2,1	0,03	0,07	0,09	0,11	0,12	0,12	0,11	0,09	0,07	0,05	0,00	0,00
2,2	0,03	0,06	0,09	0,10	0,11	0,11	0,09	0,07	0,05	0,03	0,00	0,00
2,3	0,03	0,06	0,08	0,10	0,10	0,09	0,08	0,06	0,04	0,02	0,00	0,00
2,4	0,03	0,05	0,08	0,09	0,09	0,08	0,07	0,05	0,03	0,01	0,00	0,00
2,5	0,03	0,05	0,07	0,08	0,08	0,07	0,05	0,03	0,02	0,00	0,00	0,00

7. Находим плотности вероятностей:

$$f(L_i) = \frac{af(L_i)}{a}. (4.7)$$

Находим теоретические вероятности попадания СВ в интервалы (строка \mathfrak{N}_{2} 7 табл. 4.1):

$$p_i = f(L_i)\Delta L. \tag{4.8}$$

8. Вычисляем теоретическое количество попаданий в интервалы (строка № 8 табл. 4.1):

$$n_i = p_i N. (4.9)$$

- 9. Вычисляем составляющие критерия Пирсона по формуле (2.7) для каждого интервала (строка № 9 табл. 4.1). Значение критерия Пирсона определяют по формуле (2.8).
- 10. Проверяем правдоподобность гипотезы о принадлежности опытных данных к логарифмически нормальному закону с помощью критерия Пирсона (табл. 2.3). Число степеней свободы определяют по формуле (2.9) при s = 3. При $P(\gamma^2, \eta) > \alpha$ гипотеза не отвергается.
- 11. Проверяем правдоподобность гипотезы о принадлежности опытных данных логарифмически нормальному распределению с помощью критерия Романовского по формуле (2.10). При r < 3 гипотеза не отвергается.

Порядок выполнения работы

- 1. Заготовить форму статистической таблицы (табл. 4.1).
- 2. Выполнить перестановку в строке № 3 табл. 4.1 согласно варианту (табл. 2.4).
- 3. Вычислить основные числовые характеристики распределения и заполнить таблицу.
- 4. Проверить правдоподобность гипотезы о принадлежности опытных данных к распределению Вейбулла по критериям Пирсона и Романовского.

Практическая работа № 5

ПОКАЗАТЕЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ В ЗАДАЧАХ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ АВТОМОБИЛЕЙ

Цель работы: изучение основных характеристик и особенностей, методики и навыков применения показательного закона распределения СВ в задачах технической эксплуатации автомобилей.

Общие сведения

Показательное распределение находит широкое применение при решении различных экономических и технических задач, связанных с исследованием эффективности функционирования автотранспортных средств и их систем:

- при определении надежности деталей, когда единичные повреждения приводят к отказу автомобиля; такие условия возникают при превышении нагрузки, например, при ударе, при превышении электрического напряжения, приводящем к перегоранию конденсаторов, ламп и т. д.;
- при определении параметров систем массового обслуживания (СМО):
- а) время на выполнение диагностирования автомобилей, смазки и регулировки их механизмов;
- б) для расчета времени между прибытиями автомобилей на станцию технического обслуживания (СТО).

Рассмотрим методику применения показательного закона распределения CB на конкретном примере.

Требуется проверить правдоподобность гипотезы о показательном распределении времени диагностирования автомобилей MA3-5335 при уровне значимости $\alpha = 0.05$: $t_{\text{max}} = 5$ мин, $t_{\text{min}} = 110$ мин. Зафиксировано N = 175 наблюдений.

- 1. Группируем значения в 12 интервалах через $\Delta t = 10$ мин (k = 12).
- 2. Заготавливаем статистическую таблицу (табл. 5.1).
- 3. Определяем число попаданий опытных точек в каждый интервал n_i^* (строка № 4 табл. 5.1).
- 4. Вычисляем опытные частоты попадания СВ в каждом из интервалов (строка № 5 табл. 5.1) по формуле (2.1).

- 5. На основании вычисленных данных строим гистограмму распределения опытных частот попадания СВ в интервалы. Сравнивая внешний вид теоретической кривой с гистограммой экспериментальных данных, выдвигаем гипотезу о показательном распределении СВ.
- 7. Вычисляем общее статистическое математическое ожидание времени диагностирования (по интервалам гистограммы):

$$M^*(t) = \sum_{i=1}^k t_i m_i^*.$$
 (5.1)

Таблина 5 1

Значение времени для диагностирования неисправностей автомобилей на СТО, мин

Номер					Но	мер и	нтерва	ала				
строки	1	2	3	4	5	6	7	8	9	10	11	12
1. Границы	0	10	20	30	40	50	00	70	80	90	100	110
интервалов	10	20	30	40	50	60	70	80	90	100	110	120
2. Середины интервалов t_i	5	15	25	35	45	55	65	75	85	95	105	115
3. Опытные числа попаданий в интервалы n_i^*	49	27	32	20	15	8	8	4	5	2	3	2
4. Опытные частоты попа- даний в ин- тервалы <i>m</i> _i *	0,280	0,155	0,183	0,114	0,086	0,046	0,046	0,023	0,028	0,011	0,017	0,011
5. Теоретические числа попаданий в интервалы <i>n_i</i>	30	36	25	18	10	9	7	5	3	2	2	1
6. Слагаемые критерия Пирсона χ_i^2	0,02	2,25	1,96	0,22	0,30	0,11	0,14	0,20	1,33	0,00	0,50	1,00

8. Находим интенсивность (плотность) выполнения операций диагностирования (обнаружения отказа, неисправности) по формуле

$$\omega = \frac{1}{M^*(t)}. ag{5.2}$$

9. Вычисляем статистическую дисперсию

$$D^{*}(t) = \sum_{i=1}^{n} t_{i}^{2} m_{i}^{*} - (M^{*}(t))^{2}.$$
 (5.3)

10. Согласно приближенному способу, вероятность попадания в интервалы определяется по формуле

$$p(a_i < t < b_i) \approx \frac{n_i}{N} = f(t)\Delta t = \omega e^{-\omega t} \Delta t.$$
 (5.4)

Следовательно

$$n_i = N \omega e^{-\omega t} \Delta t. \tag{5.5}$$

Применим для рассматриваемой задачи приближенный способ. Логарифмируя выражение (5.5), получаем

$$\lg n_i = \lg N + \lg \omega - \omega t \lg e + \lg \Delta t. \tag{5.6}$$

Произведем замену переменных

$$\lg n_i = y_i$$
; $t_i = x_i$; $a = -\omega \lg e$; $b = \lg N + + \lg \omega + \lg \Delta t$.

Тогда выражение (5.6) можно представить в виде уравнения прямой линии:

$$y = ax + b. (5.7)$$

Для середины интервалов имеем

$$\lg n_i = -at_i + b. (5.8)$$

Потенцируя (5.8), получаем n_i (строка № 5 табл. 5.1).

Находим значение χ^2 и заполняем строку № 6 табл. 5.1.

- 11. Вычисляем слагаемые критерия Пирсона (строка № 6 табл. 5.1) по формуле (2.7).
 - 12. Значение критерия Пирсона определяем по формуле (2.8).

- 13. Проверяем правдоподобность гипотезы о принадлежности опытных данных к показательному закону с помощью критерия Пирсона (табл. 2.3). Число степеней свободы η определить при s=2. Заданный (допустимый) уровень значимости $\alpha=0,05$. При $P(\chi^2,\eta)>\alpha$ гипотеза не отвергается.
- 14. Проверяем правдоподобность гипотезы о принадлежности опытных данных показательному распределению с помощью критерия Романовского по формуле (2.10). При r < 3 гипотеза не отвергается.

Порядок выполнения работы

- 1. Заготовить форму статистической таблицы (табл. 5.1).
- 2. Выполнить перестановку в строке № 3 табл. 5.1 согласно варианту (табл. 2.4).
- 3. Вычислить основные числовые характеристики распределения и заполнить таблицу.
- 4. Проверить правдоподобность гипотезы о принадлежности опытных данных к показательному распределению по критериям Пирсона и Романовского.

Практическая работа № 6

ГАММА-РАСПРЕДЕЛЕНИЕ В ЗАДАЧАХ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ АВТОМОБИЛЕЙ

Цель работы: изучение основных характеристик и особенностей, методики и навыков применения гамма-распределения в задачах технической эксплуатации автомобилей.

Общие сведения

Гамма-распределение представляет собой композицию нескольких законов. Применяется для описания распределения времени между двумя последовательными событиями, операциями по обслуживанию; для определения надежности и безотказности автотранспортных средств и их узлов.

Рассмотрим методику статистической проверки гипотезы о принадлежности опытных данных к гамма-распределению на конкретном примере.

Исследуется закон распределения вероятностей пробега до отказа ручного тормоза автомобилей МАЗ. Всего было зафиксировано N=76 наблюдений. Размах длины пробега до отказа составил x=4–112 тыс. км.

Требуется проверить правдоподобность гипотезы о принадлежности опытных данных к гамма-распределению при уровне значимости $\alpha=0.05$.

- 1. Группируем значения в 9 интервалах (k = 9).
- 2. Заготавливаем статистическую таблицу (табл. 6.1).
- 3. Для удобства вычислений масштабируем значения переменных умножением на 0,1. Тогда ширина интервала будет составлять $\Delta L = 1,2$ тыс. км, а середины интервалов занести в строку № 2 табл. 6.1.
- 4. Определяем число попаданий опытных точек в каждый интервал n_i^* (строка № 3 табл. 6.1).
- 5. Вычисляем опытные частоты попадания СВ в каждом из интервалов (строка № 4 табл. 6.1) по формуле (2.3).
- 6. Вычисляем математическое ожидание пробега автомобиля до выхода из строя ручного тормоза $M^*[L]$ по формуле (4.1).
 - 7. Вычисляем статистическую дисперсию $D^*[L]$ по формуле (4.2).

Таблица 6.1

Статистическая таблица

Номер				Номер	р интері	вала k_i			
строки	1	2	3	4	5	6	7	8	9
			Гра	аницы и	інтерва.	па, тыс.	KM		•
1	4	16	28	40	52	64	76	88	100
	16	28	40	52	64	76	88	100	112
2			Середи	ны инте	рвалов	L_i , тыс.	км × 10)	
	1,0	2,2	3,4	4,6	5,8	7,0	8,2	9,4	10,6
3		Опыт	ное кол	ичество	о попада	аний в і	интерва.	лы n_i^*	
3	6	9	15	11	12	7	9	3	4
4		Опы	тные ча	астоты	попадан	ий в ин	терваль	m_i^*	
4	0,079	0,118	0,197	0,145	0,158	0,092	0,118	0,040	0,052
5			Па	раметр	входа в	таблиц	$y x_i$		
3	1,17	2,57	3,98	5,37	6,78	8,18	9,58	11,0	12,4
6		Зна	чения і	вспомог	ательно	ой функ	ции ф(2	ωt)	
6	0,050	0,114	0,135	0,120	0,090	0,070	0,047	0,632	0,022
7		Ин	нтервалі	ьная пл	отность	вероят	ности <i>f</i> (L_i)	
/	0,058	0,133	0,158	0,140	0,115	0,084	0,055	0,038	0,030
8		I	Вероятн	ость по	падания	я в инте	рвалы р	\mathbf{p}_i	
0	0,069	0,159	0,162	0,168	0,139	0,100	0,066	0,045	0,036
9	,	Георети	ческое	количес	ство поі	таданий	і в интеј	рвалы п	i
9	5,17	12,0	12,3	12,76	10,56	7,6	5,0	3,42	2,7
10			Сла	гаемые	критер	ия Пиро	сона		
10	0,162	0,750	0,363	0,080	0,217	0,047	3,430	0,050	0,620

- 8. Находим несмещенную оценку для дисперсии и среднеквадратического отклонения по формуле (4.3).
- 9. Определяем параметры гамма-распределения α и ω. Для этого совместно решаются два уравнения

$$M^*[L] = \frac{\alpha}{\omega},\tag{6.1}$$

$$M^*[L] = \frac{\alpha}{\omega}, \tag{6.1}$$

$$\tilde{D}^*[L] = \frac{\alpha}{\omega^2}. \tag{6.2}$$

Округляем α до целых и пересчитываем ω.

Значения вспомогательной функции, применяемой для определения плотности гамма-распределения $\varphi(2\omega L)$

Таблица 6.2

			211211211122 11	араметра о		
$x_i = 2\omega L_i$	2	3	4	5 5	6	7
0,4	0,081	0,008	0,0000	0,000	0,0000	0,0000
0,8	0,134	0,026	0,0035	0,000	0,0000	0,0000
1,2	0,163	0,049	0,0098	0,001	0,0000	0,0000
1,6	0,180	0,071	0,0192	0,003	0,0000	0,0000
2,0	0,184	0,092	0,0307	0,007	0,0015	0,0000
2,4	0,181	0,108	0,0434	0,013	0,0031	0,0000
2,8	0,173	0,121	0,0564	0,019	0,0055	0,0000
3,2	0,162	0,129	0,0689	0,027	0,0088	0,0023
3,6	0,149	0,134	0,0803	0,036	0,0130	0,0039
4,0	0,135	0,235	0,0900	0,045	0,0180	0,0060
4,4	0,122	0,134	0,0983	0,054	0,0238	0,0087
4,8	0,109	0,131	0,104	0,063	0,0301	0,0120
5,2	0,096	0,126	0,109	0,070	0,0368	0,0159
5,6	0,085	0,119	0,111	0,077	0,0436	0,0203
6,0	0,074	0,112	0,112	0,084	0,0504	0,0252
6,4	0,065	0,104	0,111	0,089	0,0570	0,0304
6,8	0,056	0,096	0,109	0,092	0,0632	0,0357
7,2	0,049	0,088	0,106	0,095	0,0688	0,0413
7,6	0,042	0,080	0,102	0,097	0,0738	0,0467
8,0	0,036	0,073	0,097	0,078	0,0521	0,0298
8,4	0,013	0,066	0,092	0,097	0,0817	0,0572
8,8	0,027	0,059	0,087	0,095	0,0844	0,0610
9,2	0,023	0,053	0,081	0,093	0,0863	0,0661
9,6	0,019	0,047	0,075	0,091	0,0874	0,0699
10	0,016	0,042	0,070	0,087	0,0731	0,0552
12	0,007	0,022	0,044	0,066	0,0703	0,0450
14	0,003	0,011	0,026	0,045	0,0639	0,0350
16	0,001	0,005	0,013	0.028	0,0458	0,0310

^{10.} Для каждого интервала определяем параметр для входа в статистическую таблицу x_i = 2 ωL_i и заполняем строку № 5 табл. 6.1.

^{11.} Из табл. 6.2 выписываем поинтервальные значения вспомогательной функции $\varphi(2\omega L)$ по значениям α и x_i в строку № 6 табл. 6.1.

- 12. Интервальная плотность вероятности $f(L_i)$ определяется умножением значений в строке № 6 на 2 ω и заполняем строку № 7 табл. 6.1.
- 13. Вычисляем вероятности попадания в интервалы p_i (строка № 8 табл. 6.1) по формуле (4.8) или значения строки № 7 умножаются на ширину интервала ΔL .
- 14. Вычисляем теоретическое количество попаданий в интервалы (строка № 9 табл. 6.1) по формуле (4.9).
- 15. Вычисляем составляющие критерия Пирсона по формуле (2.7) для каждого интервала (строка № 10 табл. 6.1). Значение критерия Пирсона определяют по формуле (2.8).
- 16. Проверяем правдоподобность гипотезы о принадлежности опытных данных к логарифмически нормальному закону с помощью критерия Пирсона (табл. 2.3). Число степеней свободы определяют по формуле (2.9) при s = 2. При $P(\chi^2, \eta) > \alpha$ гипотеза не отвергается.
- 17. Проверяем правдоподобность гипотезы о принадлежности опытных данных логарифмически нормальному распределению с помощью критерия Романовского по формуле (2.10). При r < 3 гипотеза не отвергается.

Порядок выполнения работы

- 1. Заготовить форму статистической таблицы (табл. 6.1).
- 2. Выполнить перестановку в строке № 3 табл. 6.1 согласно варианту (табл. 2.4).
- 3. Вычислить основные числовые характеристики распределения и заполнить таблицу.
- 4. Проверить правдоподобность гипотезы о принадлежности опытных данных к гамма-распределению по критериям Пирсона и Романовского.

Практическая работа № 7

ИСПОЛЬЗОВАНИЕ ДВУХФАКТОРНОЙ КОРРЕЛЯЦИОННОЙ МОДЕЛИ В ЗАДАЧАХ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ АВТОМОБИЛЕЙ

Цель работы: изучение основных характеристик, методики и навыков применения двухфакторной корреляционной модели в задачах ТЭА.

Обшие сведения

В общем виде двухфакторная линейная модель выглядит следующим образом:

$$Y_{p} = B_{0}X_{0} + B_{1}X_{1} + B_{2}X_{2}, (7.1)$$

где $Y_{\rm p}$ – рассчитываемый или прогнозируемый расход топлива;

 X_1 — количество работающих автомобилей на автотранспортном предприятии;

 X_2 – среднесуточная производительность автомобиля;

 B_1, B_2 – коэффициенты корреляции, которые учитывают силу воздействия названных факторов;

 $B_0 X_0$ — постоянные, которые учитывают специфику данных условий эксплуатации.

Предлагается провести исследование этой модели в отношении семи автобусных парков, при котором расходы топлива фиксировались трижды на протяжении трех месяцев.

Полученные значения расходов топлива и последовательность выполнения работы показаны в табл. 7.1.

1. Проверим однородность статистических данных (или возобновляемость эксперимента).

Проверку выполним с помощью критерия Кохрена. Для этого сначала вычислим порядковые дисперсии:

$$D(Y_i) = \frac{\sum_{j=1}^{p} (Y_{ij} - Y_{icp})^2}{p-1},$$
 (7.2)

где i – номер АТП;

j – номер опыта;

p – число параллельных опытов, p = 3;

 Y_{icp} — среднее значение расхода топлива для i-го АТП.

Статистическая таблица

					_	_	_			
льное ти	X_2Y_{cp}	1950	0089	5950	10 200	13 230	11 880	23 358	73 368	10 481
висимос	$X_1Y_{ m cp}$	1500	4675	5525	8400	9855	11070	20 152	61 177	8739
и входит орной за	X_1X_2	3250	4400	4550	5950	7154	7216	9268	41 496	5928
Значение суммы, которая входит в нормальное уравнение двухфакторной зависимости	X_2^2	4225	6400	4900	7225	9604	7444	10 404	50 502	7214,6
ие суммі авнение д	X^2 ₁	2500	3025	4225	4900	5329	6724	7744	34 447	4921
Значен	$Y^2_{ m cp}$	006	7225	7225	14 400	18 225	18 225	52 441	118 641	16 948
альный метр	X_2	65	08	70	85	86	88	102	588	84
Факториальный параметр	X_1	50	5	99	70	73	82	88	483	69
	$D(Y_i)$	1	81	121	144	324	586	225	1185	٤٬691
исления	$Y_{ m cp}$	30	85	85	120	135	135	229	819	117
Параметр для вычисления	Y_3	31	94	96	132	153	152	244	905	129,8
Тараметр	Y_2	30	85	85	120	135	135	229	819	117
	Y_1	29	92	74	108	117	118	214	736	105,1
Номер	AIII	П	2	3	4	5	9	7	Сумма	Среднее значение

Табличное значение критерия Кохрена при общепринятой точности инженерных расчетов $\alpha = 0.05$ (табл. 7.2):

$$Q_{\rm T} = \begin{cases} \alpha = 0.05 \\ k = p - 1 = 3 - 1 = 2 \\ n = 7 \end{cases} = 0.56,$$

где k – количество степеней свободы числителя;

n — количество степеней свободы знаменателя (количество суммируемых дисперсий), т. е. количество АТП.

Если $Q_{\Im} \leq Q_{\mathrm{T}}$, то гипотеза об однородности дисперсий не отклоняется.

Если $Q_{\ni} > Q_{\mathsf{T}}$, то гипотеза об однородности дисперсий отклоняется. Вычислим экспериментальное опытное значение критерия Кохрена

$$Q_{\Im} = \frac{D(Y_{i \max})}{\sum D(Y_{i})}.$$
 (7.3)

Если $Q_{\ni} < Q_{\mathsf{T}}$, возобновляемость эксперимента хорошая, гипотеза об однородности дисперсий не отклоняется.

2. Вычислим коэффициенты модели.

Для этого приведем исходное уравнение модели к нормальному виду:

$$B_{0}\overline{X}_{0} + B_{1}\overline{X}_{1} + B_{2}\overline{X}_{2} = \overline{Y}$$

$$B_{0}\overline{X}_{1} + B_{1}\overline{X}_{1}^{2} + B_{2}\overline{X}_{1}\overline{X}_{2} = \overline{X}_{1}\overline{Y}$$

$$B_{0}\overline{X}_{2} + B_{1}\overline{X}_{1}\overline{X}_{2} + B_{2}\overline{X}_{2}^{2} = \overline{X}_{2}\overline{Y}$$
(7.4)

где $\overline{X}_1, \overline{X}_2, \overline{X}_1^2, \overline{X}_2^2, \overline{X}_1 \overline{X}_2, \overline{X}_1 \overline{Y}, \overline{X}_2 \overline{Y}$ — средние значения, которые вычислены и зафиксированы в табл. 7.1, $\overline{X}_0 = 1$.

Подставляя полученные значения в уравнения (7.4), имеем:

$$B_0 + 69B_1 + 84B_2 = 117$$

$$69B_0 + 4921B_1 + 5928B_2 = 8739$$

$$84B_0 + 5928B_1 + 7214B_2 = 10481$$

Табличные значения критерия Кохрена Q_{T} , вычисленные
в зависимости от числа степеней свободы k и n при $\alpha = 0.05$
(значения после запятой)

и	k										
n	2	3	4	5	6	8	10	16	36		
2	97	93	90	87	85	81	78	73	66		
3	93	79	74	70	66	63	60	54	47		
4	76	68	62	59	56	51	48	43	36		
5	68	60	54	50	48	44	41	36	30		
6	61	53	48	44	42	38	35	31	25		
7	56	48	43	39	37	34	31	27	23		
8	51	43	39	36	33	30	28	24	20		
9	47	40	35	33	30	28	25	22	18		
10	44	37	33	30	28	25	23	20	16		

Чтобы узнать коэффициенты модели, остается решить указанную систему уравнений с тремя неизвестными. В итоге имеем

$$B_0 = -226,72;$$

 $B_1 = 2,45;$
 $B_2 = 2,07.$

Искомое уравнение математической модели запишется так:

$$Y_{p} = -226,72 + 2,45X_{1} + 2,07X_{2}. (7.5)$$

Коэффициенты при факторах X_1 и X_2 показывают степень влияния этих факторов на функцию отклика – расхода топлива.

На основе полученной математической модели представляется возможным при заданных или прогнозируемых значениях X_1 и X_2 рассчитать расход топлива.

3. Проверим полученную двухфакторную линейную модель на адекватность с помощью критерия Фишера.

Величина дисперсии неадекватности (погрешность или ошибка неадекватности) вычисляется по формуле

$$D(Y)_{\text{неад.}} = p \frac{\sum_{i=1}^{n} (Y_{i3} - Y_{ip})^{2}}{N - p - 1},$$
(7.6)

Таблица 7.3

где Y_{ip} – расчетное значение функции отклика (расхода топлива), полученное на основе уравнения регрессии;

 $Y_{i_{2}}$ – среднее значение функции отклика (экспериментальное);

N – количество всех экспериментов с учетом параллельных, N = np.

Для рассматриваемого примера ошибка неадекватности зафиксирована в табл. 7.3.

Дисперсии неадекватности

Номер АТП	Y_{i9}	$Y_{i\mathrm{p}}$	Погреш- ность	Квадрат погрешности
1	30	-226,7 + 2,45.50 + 2,07.65 = 30,35	+0,35	0,1225
2	85	-226,7 + 2,45.55 + 2,07.80 = 73,65	-11,35	128,8
3	85	= 77,45	-7,55	57,3
4	120	= 120,75	+0,75	0,56
5	135	= 155,01	+20,01	400,4
6	135	= 156,36	+21,36	456,2
7	229	= 200,04	-28,96	838,6
				$\Sigma = 1881,9$

Дисперсия возобновляемости определяется на основе ранее сделанных расчетов и составляет:

$$D(Y)_{BO3.} = \frac{\sum_{i=1}^{n} D(Y_{i3})}{n}.$$
 (7.7)

Экспериментальное значение критерия Фишера:

$$F_{9} = \frac{D(Y)_{\text{Heagl.}}}{D(Y)_{\text{BO3.}}}.$$
 (7.8)

Табличное значение критерия Фишера (табл. 7.4) при $\alpha=0.05$ и числах степеней свободы $k_1=N$ -p-1=21-3-1=17, $k_2=N$ -1=21-1=20 $F_T=2.2$. Это говорит о том, что при уровне значимости $\alpha=0.05$ $F_3=1.96 < F_T=2.2$. Математическая модель, записанная в виде линейной двухфакторной зависимости, адекватна исследуемому явлению.

Использование этой модели позволяет более досконально просматривать и корректировать расход топлива подвижного состава автомобильного транспорта.

 $\label{eq:Tadinu} \mbox{ Тaблицa 7.4}$ Тaбличные знaчения критерия Фишера $F_{\rm T}$ при $\alpha=0.05$

$k_2 = N-1$				k_1	= N-p	-1			
$\kappa_2 - \kappa_{-1}$	1	2	3	4	5	6	12	24	8
2	18	19	19	19,3	19,3	19,3	19,4	19,5	19,5
3	10	9,6	9,3	9,1	9,0	8,9	8,7	8,6	8,5
4	7,7	6,9	6,6	6,4	6,3	6,2	5,9	5,8	5,6
5	6,6	5,8	5,4	5,2	5,1	5,0	4,7	4,5	4,4
6	6,0	5,1	4,8	4,5	4,4	4,3	4,0	3,8	3,7
7	5,6	4,7	4,4	4,1	4,0	3,9	3,6	3,4	3,2
8	5,3	4,5	4,1	3,8	3,7	3,6	3,3	3,1	2,9
9	5,1	4,3	3,9	3,6	3,5	3,4 3,2	3,1	2,9	2,7
10	5,0	4,1	3,7	3,5	3,3	3,2	2,9	2,7	2,5
11	4,8	4,0	3,6	3,4 3,3	3,2	3,1	2,8	2,6 2,5	2,4
12	4,8	3,9	3,5	3,3	3,1	3,0	2,7	2,5	2,3
13	4,7	3,8	3,4	3,2	3,0	2,9	2,6	2,4	2,2
14	4,6	3,7	3,3	3,1	3,0	2,9	2,5	2,3	2,1
15	4,5	3,7	3,3	3,1	2,9	2,8	2,5	2,3	2,1
16	4,5	3,6	3,2	3,0	2,9	2,7	2,4	2,2	2,0
17	4,5	3,6	3,2	3,0	2,8	2,7 2,7	2,4	2,2	2,0
18	4,4	3,6	3,2	2,9	2,8		2,3	2,1	1,9
19	4,4	3,5	3,1	2,9	2,7	2,6	2,3	2,1	1,8
20	4,4	3,5	3,1	2,9	2,7	2,6	2,3	2,1	1,8
22	4,3	3,4	3,1	2,8	2,7	2,6	2,2	2,0	1,8
24	4,3	3,4	3,0	2,8	2,6	2,5	2,2	2,0	1,7
26	4,2	3,4 3,3	3,0	2,7	2,6	2,4	2,1	1,9	1,7
28	4,2		2,9	2,7	2,6	2,4	2,1	1,9	1,6
30	4,2	3,3	2,9	2,7	2,5	2,4	2,1	1,9	1,6
40	4,1	3,2	2,9	2,6	2,5	2,3	2,0	1,8	1,5
60	4,0	3,2	2,8	2,5	2,4	2,3	1,9	1,7	1,4
120	3,9	3,1	2,7	2,5	2,3	2,2	1,8	1,6	1,3
∞	3,8	3,0	2,6	2,4	2,2	2,1	1,8	1,5	1,0

Порядок выполнения работы

- 1. Получить статистические данные у преподавателя и занести их в таблицу, аналогичную табл. 7.1.
- 2. Выполнить расчеты значений сумм, входящих в нормальные уравнения двухфакторной закономерности.
- 3. Проверить однородность статистических данных (сделать проверку возобновляемости эксперимента) по критерию Кохрена.
 - 4. Вычислить коэффициенты модели.
 - 5. Проверить полученную двухфакторную модель на адекватность.

Практическая работа № 8 ПОДБОР ЭМПИРИЧЕСКИХ ЗАВИСИМОСТЕЙ

Цель работы: изучение методики подбора эмпирической формулы.

Общие сведения

На основе экспериментальных данных можно подобрать алгебраические выражения функции

$$y = f(x). \tag{8.1}$$

Эмпирические формулы являются приближенными выражениями аналитических формул. Замену точных аналитических выражений приближенными, более простыми, называют *аппроксимацией*, а функции – *аппроксимирующими*.

Процесс подбора эмпирических формул состоит из двух этапов:

- 1) данные измерений наносят на сетку прямоугольных координат, соединяют экспериментальные точки плавной кривой и выбирают ориентировочно вид формулы;
- 2) вычисляют параметры формул, которые наилучшим образом соответствовали бы принятой формуле.

Поэтому при анализе графического материала необходимо по возможности стремиться к использованию линейной функции. Для этого применяют метод выравнивания, заключающийся в том, что кривую, построенную по экспериментальным точкам, представляют линейной функцией.

Для преобразования некоторой кривой (8.1) в прямую линию вводят новые переменные:

$$X = f_1(x, y), \quad Y = f_2(x, y).$$
 (8.2)

В искомом уравнении они должны быть связаны линейной зависимостью

$$Y = a + bX. (8.3)$$

В уравнение (8.3) подставляют координаты двух крайних точек, взятых с графика. Получают систему двух уравнений, из которых вычисляют a и b. После установления параметров a и b получают эмпирическую формулу, которая связывает Y и X и позволяет установить эмпирическую зависимость (8.1) между x и y.

Так, если экспериментальный график имеет вид, показанный на рис. 8.1, a, то необходимо применить формулу

$$y = a x^b. (8.4)$$

Заменяя $X = \lg x$ и $Y = \lg y$, получим $Y = \lg a + bX$. При этом экспериментальная кривая превращается в прямую линию на логарифмической сетке. Если экспериментальный график имеет вид, показанный на рис. 8.1, δ , то целесообразно использовать выражение

$$y = ae^{bx}. (8.5)$$

При замене $Y = \lg y$ получим $Y = \lg a + bx \lg e$. Здесь экспериментальная кривая превращается в прямую линию на полулогарифмической сетке.

Если экспериментальный график имеет вид, представленный на рис. 8.1, θ , то эмпирическая формула принимает вид

$$y = a + \frac{b}{x}. ag{8.6}$$

Путем замены x = 1/z можно получить прямую линию на сетке прямоугольных координат y = a + bz.

Если график имеет вид, соответствующий кривым на рис. 8.1, ε , то используют формулу

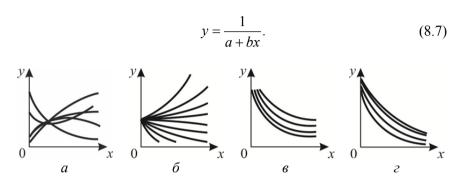


Рис. 8.1. Основные виды графиков эмпирических формул

С помощью приведенных на рис. 8.1 графиков и выражений (8.4)–(8.7) можно практически всегда подобрать уравнение эмпирической формулы.

Необходимо подобрать эмпирическую формулу для данных, представленных в табл. 8.1.

Таблица 8.1

Результаты измерений

x	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
У	0,018	0,200	0,827	2,263	4,941	9,353	16,042	25,600	38,661	55,902

На основе данных табл. 8.1 строится график зависимости y = f(x) (рис. 8.2).

Определяется соответствие его кривым (рис. 8.1). При таком виде графика ожидаемая формула $y = ax^b$. Для того чтобы линеаризировать зависимость, выполняем замену $X = \lg x$, $Y = \lg y$, тогда $Y = \lg a + bX$.

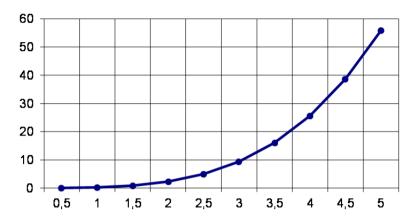


Рис. 8.2. Экспериментальная зависимость y = f(x)

Графическое изображение этой зависимости — прямая линия в логарифмической сетке. Для прямой находим коэффициенты a и b, подставляя в полученное выражение координаты крайних точек.

$$\begin{cases} \lg 0,018 = \lg a + b \lg 0,5 \\ \lg 55,902 = \lg a + b \lg 5 \end{cases};$$

$$\begin{cases} -1,74473 = \lg a - 0,69315 \ b \\ 1,74743 = \lg a + 0,69897 \ b \end{cases}, \text{ отсюда } \lg a = -1,74473 + 0,30103b;$$

$$1,74743 + 1,74473 = b \cdot (0,30103 + 0,69897);$$

$$b = 3,49216.$$

Определяем коэффициент а

$$\lg a = -1,74473 + 0,30103 \cdot 3,49216;$$

 $\lg a = -0,7;$
 $a = 0.2.$

Итак, исходное уравнение имеет вид $y = 0.2 \cdot x^{3.5}$.

Проверяем значения функции для заданных значений x (третья строка в табл. 8.2).

Таблица 8.2 Сравнение экспериментальной и эмпирической зависимости

х	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
Уэксп	0,018	0,200	0,829	2,264	4,941	9,353	16,042	25,600	38,661	55,900
y_{reop}	0,018	0,199	0,827	2,263	4,941	9,353	16,042	25,601	38,660	55,902

Сравнивая рассчитанные теоретически значения функции с экспериментальными, видим, что в некоторых точках имеются расхождения в пределах 0.001-0.003. Это говорит о том, что формула выбрана верно, параметры a и b определены правильно.

Порядок выполнения работы

- 1. Для варианта задания (табл. 8.3) подобрать вид эмпирической зависимости.
- 2. Рассчитать коэффициенты a и b и получить формулу, наиболее соответствующую экспериментальным данным.
- 3. Проверить полученную зависимость аналитически, рассчитав значения y_i для значений x_i и построить на одном графике экспериментальную и теоретическую зависимости.
- 4. Сделать выводы относительно сходимости кривых в определенных точках аргумента.

 Таблица 8.3

 Варианты заданий

вар	вариант 1 вариант 2		иант 2	вар	иант 3	вар	иант 4	вариант 5		
1	2	3	4	5	6	7	8	9	10	
x	y	х	y	X	у	X	y	x	у	
1	-5,00	0,2	0,092	1,1	16,529	0,5	0,018	3,2	-254,1	
2	-18,66	0,4	1,044	1,2	13,889	1,0	0,200	3,4	-412,7	
3	-40,32	0,6	4,317	1,3	11,834	1,5	2,468	3,6	-488,6	
4	-69,64	0,8	18,085	1,4	10,204	2,0	2,263	3,8	-620,9	
5	-106,42	1,0	25,800	1,5	10,457	2,5	4,941	4,0	-810,7	
6	-185,12	1,2	48,838	1,6	7,813	3,0	9,353	4,2	-1044,8	
7	-201,68	1,4	83,766	1,7	6,920	3,5	24,682	4,4	-1330,8	
8	-259,92	1,6	133,672	1,8	5,845	4,0	25,600	4,6	-1676,8	
9	-325,11	1,8	138,651	1,9	5,540	4,5	38,661	4,8	-2092,2	
10	-397,16	2,0	291,894	2,0	5,000	5,0	55,902	5,0	-2587,0	

Продолжение табл. 8.3

вар	вариант 6 вариант 7		вар	вариант 8		вариант 9		ант 10	
\boldsymbol{x}	y	x	y	\boldsymbol{x}	y	x	y	x	y
0,5	7,55	1,1	85,12	0,2	-13,344	2,5	162,42	0,1	68,1
1,0	8,77	1,2	80,59	0,4	-8,093	3,5	143,33	0,2	87,4
1,5	10,19	1,3	42,27	0,6	-4,909	4,5	126,49	0,3	112,2
2,0	11,84	1,4	29,79	0,8	-2,977	5,5	111,63	0,4	144,1
2,5	13,76	1,5	20,99	1	-2,258	6,5	98,51	0,5	185,0
3,0	10,36	1,6	14,79	1,2	-1,095	7,5	86,94	0,6	237,5
3,5	18,57	1,7	10,42	1,4	-0,664	8,5	76,72	0,7	305,0
4,0	21,58	1,8	7,35	1,6	-0,403	9,5	67,71	0,8	391,6
4,5	25,07	1,9	5,18	1,8	-0,244	10,5	59,75	0,9	502,8
5,0	29,13	2,0	3,65	2,0	-0,148	11,5	52,73	1,0	645,7

Продолжение табл. 8.3

1	2	3	4	5	6	7	8	9	10
вари	иант 11	вари	вариант 12		вариант 13		вариант 14		иант 15
X	y	x	y	X	y	x	y	x	y
1	-4,00	0,2	0,072	1,1	18,529	0,5	1,018	3,2	-154,1
2	-17,66	0,4	1,024	1,2	15,889	1,0	1,200	3,4	-312,7
3	-39,32	0,6	4,307	1,3	13,834	1,5	3,468	3,6	-388,6
4	-68,64	0,8	18,065	1,4	10,204	2,0	3,263	3,8	-520,9
5	-100,42	1,0	25,780	1,5	10,457	2,5	5,941	4,0	-710,7
6	-180,12	1,2	48,828	1,6	7,813	3,0	10,353	4,2	-944,8
7	-200,68	1,4	83,746	1,7	6,920	3,5	25,682	4,4	-1230,8
8	-250,92	1,6	133,632	1,8	5,845	4,0	26,600	4,6	-1576,8
9	-320,11	1,8	138,621	1,9	5,540	4,5	39,661	4,8	-1992,2
10	-390,16	2,0	291,864	2,0	5,000	5,0	56,902	5,0	-2487,0

вари	вариант 16 вариант 17		вари	иант 18	вари	ант 19	вариант 20		
X	y	x	y	x	y	x	y	X	y
0,5	6,55	1,1	75,12	0,2	-11,344	2,5	152,42	0,1	58,1
1,0	7,77	1,2	70,59	0,4	-7,093	3,5	133,33	0,2	77,4
1,5	9,19	1,3	32,27	0,6	-4,809	4,5	116,49	0,3	102,2
2,0	10,84	1,4	19,79	0,8	-2,677	5,5	101,63	0,4	134,1
2,5	12,76	1,5	10,99	1	-2,158	6,5	88,51	0,5	165,0
3,0	9,36	1,6	4,79	1,2	-1,095	7,5	76,94	0,6	217,5
3,5	17,57	1,7	0,42	1,4	-0,864	8,5	66,72	0,7	295,0
4,0	20,58	1,8	0,35	1,6	-0,603	9,5	57,71	0,8	351,6
4,5	24,07	1,9	0,18	1,8	-0,444	10,5	49,75	0,9	402,8
5,0	28,13	2,0	0,05	2,0	-0,248	11,5	42,73	1,0	545,7

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Самко, Г. А. Основы научных исследований и инновационной деятельности : пособие : в 3 ч. Ч. 2 / Г. А. Самко. Минск : БНТУ, 2016.-53 с.
- 2. Самко, Г. А. Основы научных исследований и инновационной деятельности : пособие : в 3 ч. Ч. 3 / Г. А. Самко, П. В. Иванис. Минск : БНТУ, 2016.-45 с.

Учебное излание

БУЙКУС Кястас Вито

ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ И ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ

Пособие для студентов специальностей 1-37 01 06 «Техническая эксплуатация автомобилей (по направлениям)» по направлению 1-37 01 06-01 «Техническая эксплуатация автомобилей (автотранспорт общего и личного пользования)» и 1-37 01 07 «Автосервис»

Редактор *Е. О. Германович* Компьютерная верстка *Н. А. Школьниковой*

Подписано в печать 18.09.2020. Формат $60\times84^{-1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 2,73. Уч.-изд. л. 2,14. Тираж 100. Заказ 387.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.