ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3438898/22-02
- (22) 17.05.82
- (46) 07.11.83, Bion. № 41
- (72) Б.С. Кухарев и С.Н. Левитан
- (71) Белорусский ордена Трудового Красного Знамени политехнический институт
- (53) 621,793.6 (088.8)
- (56) 1. Коломыцев П.Т., Жаростойкие диффузионные покрытия. М., "Металлур-гия", 1979, с. 130-138.
- 2. Авторское свидетельство СССР № 985142, кл. С 23 С 9/04, 1981. (54) (57) ПОРОШКОВЫЙ СОСТАВ ДЛЯ ХРОМОАЛИТИРОВАНИЯ ИЗДЕЛИЙ ИЗ НИКЕЛЯ И ЕГО СПЛАВОВ, содер-

жащий окись алюминия, окись хрома, хромоникельсодержащее вещество, тетрафтороборат калия и алюминий, от л и ч а ю ш и й с я тем, что, с целью повышения насыщающей способности состава, он в качестве хромоникельсодержащего вещества содержит хромоникелевую сталь X18Н9Т при следующем соотношении компонентов, мас. %:

Окись адкоминия	18-20
Окись жрома	20-24
Теграфтороборат кали	ıя 3 − 5
Хромоникелевая стал	
Х18Н9Т	22-24
Алюминий	Остальное

10

25

Изобретение относится к металлургин, в частности к химико-термической обрабогке металлов и сплавов и может быть использовано в машиностроительной, приборостроительной и электронной промышленности для поверхностного упрочнения деталей машин, инструмента и технологической оснастки, изготовленных из никеля и его сплавов.

Известны составы порошковых насышающих сред для диффузионного хромоалитирования на основе порошков хрома и алюминия или их лигатуры, содержашие кроме того окись алюминия и активатор. Температура и время термодиффузионной обработки при использовании известных составов, как правило, находится в пределах 900-1100°С и 2-20 ч [1],

Недостаток известных составов - высокая температура проведения процес- са насыщения, что приводит к повышенной энергоемкости процесса и увеличению себестоимости диффузионно-упрочненной продукции.

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является порошковый состав для хромоалитирования [2], содержащий окись алюминия, окись хрома, железо, тетрафтороборат калия, хромоникелевый сплав X20H80 и алюминий при следующем соотношении компонентов, вес.%:

Алюминий	Остальное		
сплав Х20Н80	14-16		
Хромоникелевый			
калия	2-4		
Тетрафторборат			
Железо	1-3		
Окись хрома	15-19		
Окись алюминия	30-40		

В результате термодиффузионной обработки в известном составе при 800°С в течение 3 ч на никелевом сплаве НК 02 формируется диффузионный слой толшиной 10-14 мкм.

Недостатком известного состава явля стся низкая насыщающая способность.

Цель изобретения - повышение насышающей способности состава для хромоалитирования изделий из никеля и его сплавов.

Поставленная цель достигается тем, что в порошковый состав для хромоалити-рования изделий из никеля и его сплавов, содержащий окись алюминия, окись хрома, тетрафтороборат келия, хромоникельсо-держащее вещество и алюминий, в качестве хромоникельсодержащего вещества содержит хромоникелевую сталь X18Н9Т при следующем соотношении компонентов, мас. %:

Окись алюминия	18-20
Окись хрома	20-24
Тетрафтороборат калия	3-5
Хромоникелевая сталь	
Х18Н9Т	22-24
Алюминий	Остально

Присутствие в составе хромоникелевой стали X18Н9Т оказывает каталитическое действие на поверхность изделия, выполняя роль активизатора процесса насыщения.

Хромоалитирование при использовании предлагаемого состава осуществляется в контейнерах с плавкими затворами при 800^{0} С в гечение 3-4 ч.

Сравнительные данные, полученные при проведении процесса хромовлитирования в известном и предлагаемом составах при 800°С, в течение 3 ч на никелевом сплаве НК 0°2, приведены в таблице.

	Состав насыщающей	среды			Топщина пиффузион- ного споя, мкм
38-40AP ₂ O ₃	Известный + 25-27Al+ 15-19 Прецпагаемый	O Cr203	+ 14-16 X 20 - 3 Fe+ 2 - 4	Н80+1 - КВР ₄	10-14
			/4 0 V 0 m 0 V m n		
	31 Al + 24 Cr ₂ O ₃		(18H9T+3KBF ₄		15
19 Al ₁ 0 ₃ +	32 A0 + 22 Cr ₂ O ₃ -	+ 23X18	3H9T44KBF4		17
20 Al ₁ O ₃ +	33 Al + 20 Cr ₂ O ₃	+ 22X1	8H9T+5KBF ₄	•	16

Из приведенных данных следует, что хромоалитирование из предлагаемого состава дает возможность увеличить толшину диффузионного слоя в 1,2-1,5

раза по сравнению с толщиной хромоалитированного слоя, полученного при использовании известного сосгава.

Составитель И., Никишкина
Редактор С.Лисина Техред А.Ач Корректор Г.Решетник

Заказ 8798/20 Тираж 956 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

113035, Москва, Ж-35, Раушская наб., д. 4/5