Союз Советских Социалистических Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ (п) 870496 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 14.01.80 (21) 2873142/22-02

с присоединением заявки М -

(23) Приоритет -

Опубликовано 07.10.81. Бюллетень № 37

Дата опубликования описания 10.10.81

(51)M. Ka.³

C 23 C 9/02

(53) УДК 621. .785.51.06 (088.8)

(72) Авторы изобретения Л. С. Ляхович, Г. В. Борисенок, А. М. Долгих, Э. П. Пучков и Г. М. Панич

(71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

(54) СОСТАВ ДЛЯ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ

1

Изобретение относится к области химико-термической обработки, а именно к составам для комплексного диффузионного насышения ванадием и хромом, и может быть использовано в машиностроительной, химической и других отраслях промышленности для повышения эксплуатационной стойкости деталей машин, инструмента и технологической оснастки.

Известен состав для диффузионного ванадирования содержащий 60% феррованадия, 37% каолина и 3% клористого аммония [1].

Наиболее близким техническим решением из известных является состав содержащий, мас.%:

 Феррованадий
 60

 Окись алюминия
 33

 Хлористый аммоний
 7

Процесс ванадирования в известном составе осуществляли при температуре 1100°С в течение 10 ч. При этом на сталях 08 кп и У8 формировались диф2

фузионные слои толшиной соответственно 10-15 и 12-15 мкм.

Недостатками известных составов для диффузионного ванадирования являются низкая насыщающая способность; необходимость применения специального оборудования для приготовления порошка феррованадия, промышленностью не выпускающегося; относительно высокая стоимость состава 1,65 руб/кг/см(расчет стоимости смесей в приложении).

Цель изобретения – интенсификация процесса диффузионного насыщения и повышение его технологической и экономической эффективности.

Для достижения указанной цели в предлагаемом составе, содержащем феррованаций, окись алюминия и хлористый аммоний, в качестве ванадийсодержащего вещества используют окись ванадия и состав дополнительно содержит окись хрома и силикокальция при следующем соотношении комлонентов, мас.%:

Окись ванадия 17 - 24Окись хрома 24-17 Силикокальций 18-21 Хлористый аммоний ... 1-3 Окись алюминия

Остальное.

Процесс химико-термической обработки в предлагаемом составе проводят при тем-пературах $1000-1100^{0}$ С в течение 4-6 ч

(в зависимости от требуемой толщины диффузионного слоя).

Пример. Проводят химико-термическую обработку сталей 08 кп и У8 в предлагаемом составе при 1100 С в течение 4 ч. Сравнительные данные по насыщающей способности предлагаемого и известного состава представлены в таблице.

uu Võyõ	Состав насыщающей среды		Условия насыщения, $t^{\mathfrak{o}}, \; C \mathcal{C}, \; q$		Толщина диффузион- ного слоя	
					08 кп	У8
	Предлагаемый состав:	and the second s				
1	Окись ванадия Окись хрома Силикокальций Хлористый аммоний Окись алюминия	17 24 18 1	1100	4	2 9	38
2	Окись ванадия Окись хрома Хлористый аммоний Окись алюминия	20 21 2 37	1100	4	33	.42
3	Окись ванадия Окись хрома Силикокальций Окись алюминия	24 17 21 35	1100	4	34	·44
	Известный состав:	00				
4	Феррованадий Скись алюминия Хлористый аммоний	60 33 7	1100	10	10-15	12-15

40

Как видно из таблицы, насыщающая способность предлагаемого состава в 2,0-3,5 раза выше, чем известного, при этом предлагаемый состав в 1,9 раза дешевле известного.

Формула изобретения

Состав для химико-термической обработки стальных изделий, включающий ванадийсодержащее вещество, окись алюминия и хлористый аммоний, о т л и ч ающийсятем, что, с целью интенсификации процесса насышения, он дополнительно содержит окись хрома и силикокальций, а в качестве ванадийсодержащего вещества - окись ванадия при следующем соотношении компонентов, мас. %:

Окись ванадия	17-24	
Окись хрома	24-17	
Силикокальций	18-21	
Хлористый аммоний	1-3 .	
Окись алюминия	Остальное.	

Источники информации,

1. Минкевич А. Н. Химико-термическая обработка металлоз и сплавов. М., 1965, c. 303.

принтые во внимание при экспертизе

2. Сб. "Защитные покрытия на металлах и сплавах", вып. 9. Киев, Наукова думка," 1975, с. 106-108.

Вниипи

3akas 8748/28

Тираж 1051

Подписное