СПЕЦИАЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ.
ОСНОВЫ ТЕОРИИ МНОЖЕСТВ. ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ

Учебное пособие
для студентов специальности
1-40 01 01 «Программное обеспечение информационных технологий»

Учебное электронное издание

Минск 2010
УДК 510.6 (075.8)

Авторы:
В.И. Каскевич,
Е.А. Федосик

Рецензенты:
А.Н. Исаченко, доцент кафедры «Математическое обеспечение автоматизированных систем управления» БГУ, кандидат физ.-мат. наук;
В.В. Павлов, доцент кафедры «Высшая математика № 2» БНТУ, кандидат физ.-мат. наук

Учебное пособие содержит необходимые сведения по двум базовым разделам высшей математики. Рассмотрены основные определения, теоремы, алгоритмы. Приведены примеры, иллюстрирующие теоретические сведения.

Белорусский национальный технический университет
пр-т Независимости, 65, г. Минск, Беларусь
Тел. (017) 292-80-75
E-mail: mathematics1@bntu.by
Регистрационный № БНТУ/ФИТР48-1.2010

© БНТУ, 2010
© Каскевич В.И., Федосик Е.А., 2010
СОДЕРЖАНИЕ

I. ОСНОВЫ ТЕОРИИ МНОЖЕСТВ... 5
 § 1. Множества и операции над ними.. 5
 1. Основные понятия ... 5
 2. Способы задания множеств ... 6
 3. Операции над множествами ... 7
 4. Свойства операций над множествами. Алгебра множеств 8
 5. Декартово произведение множеств .. 9
 § 2. Отображения множеств ... 10
 1. Основные понятия ... 10
 2. Произведение (композиция) отображений 12
 3. Обратные отображения .. 13
 § 3. Отношения ... 13
 1. Основные понятия и способы задания отношений 13
 2. Операции над бинарными отношениями и их свойства 15
 § 4. Отношения эквивалентности ... 17
 1. Классы эквивалентности .. 17
 2. Отношения частичного порядка ... 18
 § 5. Комбинаторика ... 20
 1. Размещения .. 20
 2. Перестановки ... 21
 3. Сочетания .. 22
 4. Сочетания с повторениями .. 23
 5. Бином Ньютона. Понятие о производящей функции 23
 6. Числа Стирлинга ... 24
 7. Число Белла ... 25
 § 6. Мощности множеств .. 25
 1. Мощность конечного множества ... 25
 2. Мощности бесконечных множеств. Счетные множества 26
 3. Несчетные множества. Мощность континуума 27
 4. Кардинальные числа. Гипотеза континуума 28

II. ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ.. 29
 § 7. Основные определения и типы графов 29
 1. Основные понятия ... 29
 2. Основные типы графов ... 29
 3. Обобщения понятия графа .. 30
 4. Изоморфные графы ... 31
 5. Количество различных графов порядка n 33
 § 8. Основные числовые характеристики и матрицы графа 34
 1. Степени вершин графа .. 34
 2. Матрица смежности .. 35
 3. Матрица Кирхгофа ... 36
 4. Матрица инцидентности ... 36
 § 9. Подграфы и операции на графах ... 37
 1. Подграфы .. 37
 2. Операции над графами .. 37
§ 10. Связные графы и расстояние в графах ..39
1. Маршруты в графах. Связные графы ...39
2. Компоненты связности. Связность графа и его дополнения40
3. Расстояния на графах ...40
4. Метод поиска в ширину ..41
5. Выяснение вопросов связности, достижимости и расстояний на графе по матрице смежности ...42
§ 11. Деревья и остовы ...42
1. Критерии дерева ..42
2. Корневое дерево ..44
3. Типы вершин дерева, радиус и центры ...45
4. Остовы графа, циклический ранг и ранг разрезов ...45
5. Задача о минимальном остове ..46
6. Разрезы графа. Фундаментальная система циклов и фундаментальная система разрезов ...47
7. Линейное пространство графа..48
§ 12. Эйлера́вы и гамильтоновы графы ...49
1. Эйлеровы графы ..49
2. Гамильтоновы графы ..50
§ 13. Планарные графы ...51
1. Вложимость графов в трехмерное пространство ...51
2. Планарные графы. Формула Эйлера ...52
3. Следствия из формулы Эйлера ..52
4. Гомеоморфные графы. Критерий планарности ...54
§ 14. Раскраски графов ..55
1. Хроматическое число графа ...55
2. Хроматическое число 2-дольного графа. Критерий 2-дольности...............56
3. Некоторые оценки хроматического числа ..56
4. Раскраски планарных графов ..57
5. Реберная раскраска графа ...57
§ 15. Паросочетания ..58
1. Паросочетания ..58
2. Теорема Холла о свадьбах ...59
§ 16. Сети ..59
1. Основные понятия ...59
2. Потоки в сетях ..60
3. Сетевое планирование ...62

ТИПОВОЙ РАСЧЕТ «ГРАФЫ» ..64
Задание ..64
Варианты индивидуальных заданий ..64

ЛИТЕРАТУРА ..70
1. ОСНОВЫ ТЕОРИИ МНОЖЕСТВ

§ 1. Множества и операции над ними

1. Основные понятия

Понятие множества, как и некоторые другие исходные понятия в математике, не определяется. Ему дается описание, которое иллюстрируется примерами.

Под множеством в математике понимается любая совокупность каких-либо объектов. При этом сами объекты, составляющие множество, называются элементами множества. Например, можно говорить о множестве яблок в мешке, множестве натуральных чисел, множестве геометрических фигур на плоскости и т. д. Как правило, множество объединяет однотипные элементы (яблоки, числа и т. д.). Но это – не обязательно. Можно рассматривать множества, состоящие из разнородных элементов.

Обычно множества обозначают заглавными латинскими буквами (A, B, C, ...), а их элементы – прописными (a, b, c, ...).

Если A – множество, а a – его элемент, то пишут: \(a \in A \).

Если \(b \) не является элементом множества \(B \), то пишут: \(b \notin B \).

Примеры.
1. \(M_1 \) — множество действительных чисел \(\mathbb{R} \).
2. \(M_2 \) — множество решений уравнения \(\sin x = 1 \).
3. \(M_3 \) — множество чисел вида \(\frac{\pi}{2} + 2\pi k \), где \(k \in \mathbb{Z} \) (\(\mathbb{Z} \) - множество целых чисел).
5. \(M_5 \) — множество всех футбольных команд высшей лиги.
6. \(M_6 \) — множество русских слов из словаря В. И. Дая.
7. \(M_7 \) — множество равносторонних треугольников.
8. \(M_8 \) — множество прямоугольных треугольников.

Множество \(B \) называется подмножеством множества \(A \), если всякий элемент множества \(B \) принадлежит множеству \(A \). В этом случае пишут: \(B \subseteq A \).

Множества \(A \) и \(B \) называются равными, если их элементы совпадают. Легко видеть, что равенство множеств \(A = B \) имеет место тогда и только тогда, когда \(B \subseteq A \) и \(A \subseteq B \). Именно в проверке последних двух условий заключается основной способ доказательства равенства двух множеств.

Примеры: \(M_2 = M_3 ; M_7 = M_8 \).

Если \(B \subseteq A \), но \(A \neq B \), то \(B \) называется собственным подмножеством множества \(A \), и это записывается: \(B \subset A \).

Множества могут быть конечными и бесконечными. Число элементов конечного множества \(A \) называется его мощностью и обозначается \(|A| \).

Множество мощности 0, т. е. не содержащее никаких элементов, называется пустым множеством и обозначается: \(\emptyset \). Принято считать, что пустое множество является подмножеством любого множества \(A \), поскольку невозможно указать ни одного элемента \(\emptyset \), который бы не принадлежал множеству \(A \). Нетрудно видеть, что справедлива

Лемма. Пустое множество единственно.
Доказательство. Действительно, если \emptyset_1, \emptyset_2 — два пустых множества, то согласно вышеприведенному свойству пустого множества (быть подмножеством любого множества) имеем: $\emptyset_1 \subseteq \emptyset_2$ и $\emptyset_2 \subseteq \emptyset_1$, откуда $\emptyset_1 = \emptyset_2$.

2. Способы задания множеств

Множество считается заданным, если о каждом элементе можно однозначно сказать, принадлежит он этому множеству или нет.

а) Простейший способ задания множества состоит просто в перечислении всех элементов данного множества.

Если множество A конечное, состоящее из элементов a_1, a_2, \ldots, a_n, то пишут $A = \{a_1, a_2, \ldots, a_n\}$. В частности, $\{a\} —$ множество, состоящее из одного элемента a.

Но такой способ задания применим, разумеется, лишь к конечным множествам.

б) Другой, универсальный способ: задание множества A с помощью характеристического свойства элементов данного множества, то есть такого свойства, которым обладают все элементы множества A и не обладают другие элементы, не принадлежащие A.

Если $P(x)$ — такое свойство, то пишут: $A = \{x \mid P(x)\}$.

Например, для конечного множества $A = \{a_1, a_2, \ldots, a_n\}$ можно записать: $A = \{x \mid x = a_1, \text{или } x = a_2, \text{или } \ldots, \text{или } x = a_n\}$. Множество всех депутатов парламента можно задать так: $D = \{x \mid x — \text{депутат}\}$. Множество всех студентов $S = \{x \mid x — \text{студент}\}$.

в) Еще один способ — это задание множества с помощью порождающей процедуры, или алгоритмический способ.

Например, пусть $M = \{1, 2, 4, 8, 16, \ldots\}$ — множество степеней числа 2. Тогда его можно задать так:

1) $1 \in M$; 2) если $x \in M$, то $2^x \in M$.

Другой пример: множество $M_\pi = \{314, 159, 256, 358, \ldots\}$ задается как последовательность троек подряд идущих цифр десятилетней записи числа $\pi = 3,141592653589793238462$. … (В действительности, учитывая трансцендентность числа π, множество M_π содержит все целые числа от 0 до 999.)

г) Четвертый способ — задание множеств с помощью операций над уже известными множествами.

К описанию свойств, задающих множество, естественно предъявить требования точности и недвусмысленности. Например, множество хороших фильмов 2009г. разные люди зададут разными списками. Даже сами критерии отбора фильмов могут оказаться различными.

Надежный способ точного описания множества — распознающая (разрешающая) процедура. Например, для множеств степеней двойки M_2^n разрешающей процедурой может служить разложение числа на простые множители.

Задание множества M_π нельзя отнести ни к одному из перечисленных способов; оно по сути совсем не задано, а только названо. Задать его можно список футболистов, или описанием: M_e есть множество лиц, имеющих удостоверение футболиста клуба «БАТЭ-Борисов». В этом случае разрешающая процедура — это проверка документов.
3. Операции над множествами

Во всех рассуждениях о нескольких множествах удобно считать, что они являются подмножествами некоторого более широкого множества U, которое называется универсальным. На практике, как правило, универсальное множество даже явно не указывается, а ясно из контекста, или в случае необходимости может быть легко установлено.

Определение 1. Пересечением двух множеств A и B называется множество $A \cap B$, состоящее из элементов, которые принадлежат каждому из множеств A и B, т.е.

$$A \cap B = \{ x \mid x \in A \text{ и } x \in B \}.$$

Например, $\{1; 2; 5; 7\} \cap \{1; 5; 6\} = \{1; 5\}$. Пересечением множества прямоугольников с множеством ромбов является множество квадратов. Пересечением множества студентов-первокурсников с множеством отличников является множество первокурсников-отличников.

Определение 2. Объединением множеств A и B называется множество $A \cup B$, состоящее из элементов, которые принадлежат хотя бы одному из множеств A или B:

$$A \cup B = \{ x \mid x \in A \text{ или } x \in B \}.$$

Например, $\{1; 2; 5\} \cup \{1; 5; 6; 7\} = \{1; 2; 5; 6; 7\}$. Аналогично определяются операции объединения и пересечения трех, четырех, любой совокупности множеств. При этом используются следующие обозначения.

Если $S = \{A_1, A_2, \ldots\}$ — совокупность множеств, то их объединение и пересечение обозначаются: $\bigcup_{i \in I} A_i$, $\bigcap_{i \in I} A_i$; или $\bigcup_{i=1}^k A_i$, $\bigcap_{i=1}^k A_i$ — для конечных совокупностей и $\bigcup_{i=1}^\infty A_i$, $\bigcap_{i=1}^\infty A_i$ — для бесконечных совокупностей; а также $\bigcup_{I \in I} A_i$, $\bigcap_{I \in I} A_i$, где I — некоторое множество индексов.

Определение 3. Разностью множеств A и B называется множество $A \setminus B$, состоящее из всех элементов множества A, не принадлежащих множеству B:

$$A \setminus B = \{ x \mid x \in A \text{ и } x \notin B \}.$$

Если ясно, о каком универсальном множестве U идет речь, то разность $U \setminus A$ называется дополнением множества A и обозначается: \bar{A}.

Например, разностью множества четных чисел и множества чисел, кратных 3, является множество четных чисел, не делящихся на 6. Дополнением множества четных чисел в (универсальном множестве целых чисел) является множество нечетных чисел.

Диаграммы Эйлера-Венна

Введенные операции допускают удобное графическое истолкование с помощью диаграмм (или кругов) Эйлера-Венна, где результат операции указан штриховкой (рис.1.1).
Разбиения множеств

В основе всевозможных классификаций в биологии, лингвистике, других науках и сферах деятельности человека лежит понятие разбиения множества на попарно пересекающиеся части.

Определение 4. Пусть A — некоторое множество и $X_i, i \in I$ система подмножеств из A, обладающая следующими свойствами:

а) $\bigcup_{i \in I} X_i = A$;

б) $X_i \cap X_j = \emptyset \quad \forall i \neq j$.

Тогда говорят, что множество $\{X_i, i \in I\}$ является разбиением множества A.

Примеры. Разбиение списка студентов группы по первым буквам их фамилий. Разбиение студентов группы по вариантам на контрольной работе. Разбиение целых чисел на четные и нечетные.

Замечание. Для любого $a \in A$, если $\bigcup_{i \in I} X_i = A$ — разбиение множества A, то существует единственное множество X_i, такое что $a \in X_i$.

4. Свойства операций над множествами. Алгебра множеств

Операции \cup и \cap обладают свойствами, аналогичными сумме и произведению чисел. В связи с этим их зачастую также называют суммой и произведением множеств и обозначают соответственно $A + B$, AB вместо $A \cup B$ и $A \cap B$. Действительно, для любых множеств A, B и C справедливы следующие равенства:

1) $\overline{A} = A$ Закон двойного дополнения
2) $A \cap B = B \cap A$ Законы коммутативности
3) $A \cup B = B \cup A$ \}
4) $(A \cap B) \cap C = A \cap (B \cap C)$ Законы ассоциативности
5) $(A \cup B) \cup C = A \cup (B \cup C)$ \}
6) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Законы дистрибутивности
7) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ \}
8) $A \cap B = \overline{A \cup B}$ Законы де Моргана
9) $A \cup B = \overline{A \cap B}$ \}
10) $A \cap A = A$ Законы идемпотентности
11) $A \cup A = A$ \}
12) $A \cap U = A$ Законы универсального множества
13) $A \cup U = U$ \}
14) $A \cap \overline{A} = \emptyset$ Законы пустого множества
15) $A \cup \emptyset = A$ \}
16) $A \cup (A \cap B) = A$ Законы поглощения
17) $A \cap (A \cup B) = A$ \}

8
В справедливости этих законов легко убедиться с помощью диаграмм Эйлера-Венна, изобразив отдельно множества, соответствующие левой и правой части равенства, и проверив, что они совпадают.

Например, для иллюстрации закона 7) имеем диаграммы, приведенные на рис. 1.2.

Рис. 1.2

Строгое доказательство всех равенств основано на проверке включений \(\subseteq \) и \(\supseteq \).

Например, для доказательства закона 9) нужно проверить:

9а) \(A \cup B \subseteq \overline{A} \cap \overline{B} \);

9б) \(A \cap B \subseteq A \cup B \).

Доказательство 9а). Пусть \(x \in \overline{A} \cup \overline{B} \). Тогда \(x \notin A \cup B \). Значит, \(x \notin A \) и \(x \notin B \), то есть \(x \in \overline{A} \) и \(x \in \overline{B} \), и поэтому \(x \in \overline{A} \cap \overline{B} \).

Доказательство 9б). Пусть \(x \in \overline{A} \cap \overline{B} \). Тогда \(x \in \overline{A} \) и \(x \in \overline{B} \). Следовательно, \(x \notin A \) и \(x \notin B \). Поэтому \(x \notin A \cup B \) и, значит, \(x \in A \cup B \).

Определение. Совокупность \(\Omega(U) \) всех подмножеств универсального множества \(U \) (такая совокупность называется булевом множества \(U \)) вместе с операциями \(\cup, \cap, \cdot \), обладающими вышеперечисленными свойствами, называется булевой алгеброй множеств.

Заметим, что в результате операций \(\cup, \cap, \cdot \) над любыми подмножествами из \(U \) также получаются подмножества из \(U \). В этом случае говорят, что указанные операции замкнуты на \(U \).

Можно показать, что множество соотношений 1) – 15) полно в том смысле, что любое правильное равенство, образованное при помощи символов \(\emptyset, U, \cup, \cap, \cdot \), букв латинского алфавита, обозначающих множества, и скобок, указывающих порядок выполнения операций, вытекает из свойств 1) – 15).

5. Декартово произведение множеств.

Пусть имеются два множества \(A \) и \(B \) (не обязательно \(A \neq B \)).

Определение. Декартовым (или прямым) произведением множеств \(A \) и \(B \) называется множество всех упорядоченных пар вида \((a, b) \), где первый элемент \(a \in A \), а второй — \(b \in B \):

\[A \times B = \{(a, b) \mid a \in A, b \in B\} . \]
Множества A и B предполагаются непустыми. В противном случае, если $A = \emptyset$ или $B = \emptyset$, то $A \times B = \emptyset$.

Если, например, $A = \{a_1, a_2\}$, $B = \{b_1, b_2, b_3\}$, то:

$$A \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_3)\}.$$

Вообще говоря, $A \times B \neq B \times A$, за исключением случая, когда $A = B$. Тогда произведение $A \times A$ называется декартовым квадратом множества A и обозначается: A^2. Если $A = B = \mathbb{R}$ – множество действительных чисел, то $\mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$ можно рассматривать, как координатную плоскость, отождествив пару (a, b) с точкой, имеющей координаты $x = a$ и $y = b$.

В частности, если имеются отрезки $A = [1; 3]$, $B = [1; 4]$, то $A \times B$ представляет собой прямоугольник на координатной плоскости xOy (рис. 1.3).

Всякая кривая Γ на плоскости может быть истолкована как подмножество \mathbb{R}^2, определяемое некоторым условием (уравнением):

$$\Gamma = \{(x, y) \in \mathbb{R} \mid f(x, y) = 0\}.$$

Аналогично определяется декартовое произведение любого количества непустых множеств.

Именно, пусть заданы множества A_1, A_2, ..., A_n. Тогда n-кой (кортеже) называется упорядоченный набор $(a_1, a_2, ..., a_n)$, такой что $a_i \in A_i \forall i = 1, n$. Множество всех таких n-ок называется декартовым произведением множеств A_1, A_2, ..., A_n и обозначается $A_1 \times A_2 \times \ldots \times A_n = \prod_{i=1}^{n} A_i$. В частности, если все $A_i = A$, то $\prod_{i=1}^{n} A_i = A^n$ называется n-ой декартовой степенью множества A.

Замечание. Вообще говоря, $(\mathbb{R}^3)^3 \neq \mathbb{R}^{12}$. Действительно, $(\mathbb{R}^4)^3$ следует рассматривать как множество матриц 3×4, а \mathbb{R}^{12} — кортежи, не учитывающие матричной структуры.

Таким образом, уже из данного примера следует, что ассоциативный закон для декартового произведения множеств не выполняется.

Но дистрибутивные законы относительно \cup, \cap и \$ имеет место:

$$(A_1 \cup A_2) \times B = (A_1 \times B) \cup (A_2 \times B);$$

$$(A_1 \cap A_2) \times B = (A_1 \times B) \cap (A_2 \times B);$$

$$(A_1 \setminus A_2) \times B = (A_1 \times B) \setminus (A_2 \times B).$$

В любом случае, операция "\times" существенно отличается от предшествующих операций на множествах в том плане, что декартово произведение множеств из данного универсального множества U уже не принадлежит U.

§ 2. Отображения множеств

1. Основные понятия.

Пусть X и Y — непустые множества. Если каждому элементу $x \in X$ ставится в соответствие единственный элемент $y \in Y$, то говорят, что задано отображение
множества X во множество Y.

Часто не делают различий между понятиям “отображение” и “функция”, однако функциями чаще всего называют отображения числовых множеств.

Если f – отображение множества X в Y, то пишут: $f:X \rightarrow Y$ или $X \xrightarrow{f} Y$.

Элемент $y \in Y$, который ставится в соответствие элементу $x \in X$ при отображении $f:X \rightarrow Y$, называется образом элемента x при отображении f. При этом пишут: $y = f(x)$ или $f:x \mapsto y$. Элемент x в свою очередь называется прообразом y при отображении f.

Определение 1. Два отображения $f:X \rightarrow Y$ и $g:X \rightarrow Y$ называются равными, если $f(x) = g(x)$ для любого $x \in X$.

Определение 2. Пусть задано отображение $f:X \rightarrow Y$ и $A \subset X$. Образ множества A при отображении f называется совокупность образов всех элементов множества A. Образ A обозначается: $f(A)$.

Итак, $f(A) = \{ f(x) \mid x \in A \}$. Ясно, что $f(A) \subseteq f(X)$.

Определение 3. Пусть $f:X \rightarrow Y$ и $A \subset X$. Отображение, которое каждому элементу $x \in A$, рассматриваемому как элемент из X, ставит в соответствие $f(x) \in Y$, называется сужением отображения f на A и обозначается $f|_A$.

Таким образом, $f|_A : A \rightarrow Y$, причём $f|_A(x) = f(x) \quad \forall x \in A$. Обратно, при выполнении этих условий $f:X \rightarrow Y$ является продолжением отображения $f|_A : A \rightarrow Y$.

В случае, если X и Y – конечные множества, то отображение $f:X \rightarrow Y$ может быть задано таблицей соответствий, состоящей из двух строк.

Например, для $X = \{ x_1, x_2, x_3 \}$, $Y = \{ y_1, y_2 \}$ запись $f = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_1 \end{pmatrix}$ означает, что $f(x_1) = y_1$, $f(x_2) = y_2$, $f(x_3) = y_1$.

Упражнение: Выпишите все различные отображения $f:X \rightarrow Y$ в указанном примере и определите их количество. Найдите количество различных отображений $f:X \rightarrow Y$, если $|X| = n$, а $|Y| = m$.

Важным примером таких отображений служат подстановки из n элементов:

$\{ 1 \ 2 \ 3 \ \ldots \ n \}$, где $\{ \delta_1, \delta_2, \ldots, \delta_n \} = \{1,2,\ldots,n\}$.

Другие примеры отображений:
- поворот плоскости вокруг начала координат на угол α;
- проецирование 3-мерного пространства на координатную плоскость xOy;
- $f:R \rightarrow R$, $f(x) = \sin x$.

Определение 4. Отображение $f:X \rightarrow Y$ называется инъективным (взаимно однозначным), если различным элементам множества X соответствуют различные образы из Y, т.е., если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Легко видеть, что это условие равносильно следующему: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

Например, подстановки, повороты плоскости – взаимно однозначные отображения; проецирование $R^3 \rightarrow R^2$ – не взаимно однозначное. Отображение $f: R \rightarrow R$, где $f(x) = \sin x$ – не взаимно однозначное, но $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow R$, где $f(x) = \sin x$ – взаимно однозначное.
Определение 5. Отображение $f: X \rightarrow Y$ называется **сюръективным**, если каждый элемент $y \in Y$ является образом для некоторого элемента $x \in X$, т.е. если каждый элемент $y \in Y$ имеет хотя бы один преобраз.

Понятно, что $f: X \rightarrow Y$ — сюръективно тогда и только тогда, когда $f(X) = Y$.

Например, подстановки, поворот на угол α, преобразование $R^3 \rightarrow R^2$ — сюръективы. Отображение $f : R \rightarrow R$, где $f(x) = \sin x$ — не сюръективно, но $f : R \rightarrow [-1; 1]$, $f(x) = \sin x$ — сюръективно.

Определение 6. Отображение $f: X \rightarrow Y$ называется биективным, если оно одновременно и инъективно и сюръективно.

Примеры. Подстановки; поворот на угол α; $f : [-\pi, \pi] \rightarrow [-1; 1]$; $f(x) = \sin x$; $g : R \rightarrow R$, $g(x) = 2x + 1$ — биективные отображения.

2. **Произведение (композиция) отображений**

Пусть $f: X \rightarrow Y$, $g : Y \rightarrow Z$ и пусть $x \in X$. Отображение f переводит x в некоторый элемент $y \in Y$. При этом элемент y под действием отображения g переходит в некоторый элемент z из Z. Таким образом, в результате последовательного выполнения сначала f а потом g, каждый элемент $x \in X$ отображается в элемент $z \in Z$ и мы получаем отображение $h : X \rightarrow Z$.

Определение 7. **Произведением отображений** $f : X \rightarrow Y$ и $g : Y \rightarrow Z$ называется отображение $gf : X \rightarrow Z$ определяемое равенством $(gf)(x) = g(f(x))$.

Например, пусть $f(x) = \sin x$, $g(x) = 2^x$. Тогда $(fg)(x) = \sin(2^x)$, $(gf)(x) = 2^{\sin x}$.

Отметим, что не всегда gf и fg определены одновременно. Для этого необходимо, чтобы $g(Y) \subseteq X$. В частности, если $f : X \rightarrow X$, $g : X \rightarrow X$, то gf и fg определены. Но даже в этом случае равенство $fg = gf$, вообще говоря, не выполняется (это видно из рассмотренного примера). Таким образом, умножение отображений не коммутативно. Однако оно ассоциативно.

Теорема 1. Если $f : X \rightarrow Y$, $g : Y \rightarrow Z$, $h : Z \rightarrow U$, то $h(gf)$ и $(hg)f$ определены и равны.

Доказательство. Так как $gf : X \rightarrow Z$, то $h(gf) : X \rightarrow U$. Аналогично, $hg : Y \rightarrow U$, поэтому $(hg)f : X \rightarrow U$. Покажем, что $\forall \ x \in X \ [h(gf)(x)] = [(hg)f](x)$. Пусть $x_0 \in X$. Имеем:

$x_0 \xrightarrow{f} y_0 \xrightarrow{g} z_0 \xrightarrow{h} u_0$. Поэтому согласно определению произведения отображений $[h(gf)](x_0) = h([gf](x_0)) = h[g(f(x_0))] = h[g(y_0)] = h(z_0) = u_0$ и $[(hg)f](x_0) = h[g(f(x_0))] = h(g(f(x_0))) = \ldots = u_0$.

Определение 8. Отображение $f : X \rightarrow X$ называется тождественным, или **единичным**, если $f(x) = x$, $\forall \ x \in X$. Обозначения: e_X, 1_X, id_X.

Теорема 2. Если $f : X \rightarrow Y$, то $f \ e_X = f$ и $e_Y f = f$.

Следствие. Если $f : X \rightarrow X$, то $f \ e_X = e_X f = f$.

Теорема 3. Пусть $f : X \rightarrow Y$, $g : Y \rightarrow Z$. Если f и g инъективны, то fg — инъективно. Если f и g сюръективны, то fg — сюръективно.
Доказательство.

1) Имеем \(f(x_1) = f(x_2) \Rightarrow x_1 = x_2; \quad g(y_1) = g(y_2) \Rightarrow y_1 = y_2. \)

Пусть \((gf)(x) = (gf)(x_2), \) то \(g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2. \)

2) Пусть \(f, g \) – сюръективны и \(z_0 \in Z. \) Так как \(g \) – сюръективно, то \(\exists y_0 : g(y_0) = z_0. \)

А так как \(f \) – сюръективно, то \(\exists x_0 : f(x_0) = y_0. \)

Таким образом, \(z_0 = g(y_0) = g(f(x_0)) = (gf)(x_0). \)

Следствие. Произведение биективных отображений – биективно.

3. **Обратные отображения**

Определение. Пусть \(f : X \rightarrow Y. \) Если существует отображение \(\varphi : Y \rightarrow X \) такое, что \(\varphi f = e_X \) и \(f \varphi = e_Y, \) то отображение \(\varphi \) называется обратным к отображению \(f, \) а отображение \(f \) в этом случае называется обратимым.

Понятно, что в условиях определения обратным к \(\varphi \) является \(f. \) Обозначение: \(\varphi = f^{-1}. \)

Теорема 4 (критерий обратимости отображения).

Отображение \(f : X \rightarrow Y \) обратимо тогда и только тогда, когда оно биективно.

Доказательство. Необходимость. Пусть отображение \(f : X \rightarrow Y \) биективно. Так как оно сюръективно, то \(\forall y_0 \in Y \) есть хотя бы один прообраз из \(X. \) Но в силу инъективности все элементы имеют разные образы. Поэтому у0 имеет единственный прообраз \(x_0. \)

Сопоставив каждому элементу \(y \) из \(Y \) его единственный прообраз, получим отображение \(\varphi : Y \rightarrow X \) такое, что \(y = f(x), \) то \(\varphi(y) = x. \) При этом получим \(\forall x \in X \)

\(\varphi f(x) = \varphi(f(x)) = \varphi(y) = x, \) т.е. \(\varphi f = e_X; \quad \forall y \in Y \quad f \varphi(y) = f(\varphi(y)) = f(x) = y, \) т.е. \(f \varphi = e_Y. \)

Достаточность. Пусть отображение \(f : X \rightarrow Y \) – обратимое и \(\varphi : Y \rightarrow X \) – обратное к \(f. \) Пусть \(f(x_1) = f(x_2). \) Применим к данному равенству отображение \(\varphi: \)

\(\varphi(f(x_1)) = \varphi(f(x_2)) \Leftrightarrow (\varphi f)(x_1) = (\varphi f)(x_2) \Leftrightarrow e_x(x_1) = e_x(x_2) \Leftrightarrow x_1 = x_2. \)

Таким образом, \(f \) – инъективно.

Пусть \(y_0 \in Y. \) Найдём прообраз \(x_0, \) такой, что \(y_0 = f(x_0). \) Имеем:

\(y_0 = e_Y(y_0) = (f \varphi)(y_0) = f(\varphi(y_0)) = f(x_0), \)

где \(x_0 = \varphi(y_0). \) Тем самым, \(f \) – сюръективно.

Следствие. Если \(f \) – биективно, то и \(f^{-1} \) также биективно.

§ 3. Отношения

1. **Основные понятия и способы задания отношений**

В различных научных и других сферах деятельности человека для описания связей между предметами используется понятие отношения. Например, отношение “меньше – больше” на множестве действительных чисел; отношение делимости на множестве целых чисел; отношение подобия на множестве треугольников; отношения параллельности и перпендикулярности на множестве прямых и плоскостей; отношения
родства, дружбы, знакомства на множестве людей; отношение “начальник-подчиненный” на предприятии и др. В математике понятие отношения, как и большинство понятий, имеет строгое определение.

Определение. Бинарным отношением R на множествах A и B называется всякое подмножество $R \subseteq A \times B$.

Если элементы $a \in A$ и $b \in B$ находятся в отношении R, т. е. $(a,b) \in R$, то пишут: aRb. Например, $a < b$ (для отношения “меньше – больше” на множестве действительных чисел), $a: b$ (a делится на b, для отношения делимости на множестве целых чисел), $A \subseteq B$ (для отношения включения на множестве подмножеств некоторого универсального множества U), $\Delta ABC \sim \Delta KLM$ (для отношения подобия на множестве треугольников) и т. д.

Если $B = A$, то отношение $R \subseteq A \times A$ называется отношением на множестве A (вместо «отношение на множествах A и A»).

Отношение $U = A \times B$, называется **универсальным**, или **всюду истинным** отношением на A и B. Отношение $R = \emptyset$ называется **пустым**, или **всюду ложным**. Отношение $I = \{(a,a) \mid a \in A\}$ называется **тождественным** отношением на множестве A. Множество $D(R) = \{a \in A \mid \exists b \in B, aRb\}$ называются областью определения отношения R, а множество $E(R) = \{b \in B \mid \exists a \in A, aRb\}$ — областью значений отношения R. ($D(R)$ и $E(R)$ иногда называют также проекциями R на A и B, соответственно.)

Два отношения R_1 и R_2 называются *равными*, если R_1 и R_2 равны, как множества. Если $R_1 \subseteq R_2$, то говорят, что "отношение R_1 влечет отношение R_2" (или "из отношения R_1 следует отношение R_2").

Определяя на числовых множествах можно изобразить графически на координатной плоскости, поставив каждой паре $(a,b) \in R$ в соответствие точку с координатами $x = a$ и $y = b$. Например, отношению "≤" на множестве действительных чисел \mathbb{R} соответствует полуплоскость (рис. 3.1). Отношению "=" на множестве действительных чисел \mathbb{R} соответствует прямая (рис. 3.2).

Всякое отображение (функцию) $f : A \to B$ можно рассмотреть как отношение R_f на множествах A и B, положив $aR_f b$, если $f(a) = b$ для всех $a \in A$, $b \in B$. Если A и B — числовые множества, то графической иллюстрацией такого отношения является обычный график функции $y = f(x)$ (рис. 3.3).

Обратно, всякое отношение $R \subseteq A \times B$ называется **функциональным**, если $\forall a \in A$ существует единственный элемент $b \in B$, такой, что aRb.

Рис. 3.1

Рис. 3.2

Рис. 3.3
Из рассмотренных выше примеров видно, что отношения (на числовых множествах) могут быть заданы графически в виде соответствующего множества точек на координатной плоскости.

Отношения на конечных множествах могут быть заданы непосредственным перечислением всех пар элементов данного отношения.

Например, пусть R – отношение делимости на множестве $A = \{1; 2; 3; 4; 5; 6\}$ $(aRb$, если $a:b$, т. е. a делится на b). Тогда $R = \{(1,1); (2,1); (2,2); (3,1); (3,3); (4,1); (4,2); (4,4); (5,1); (5,5); (6,1); (6,2); (6,3); (6,6)\}$.

Это же отношение можно задать с помощью матрицы отношения.

Матрицей бинарного отношения $R \subseteq A \times B$, где $|A| = n$, $|B| = m$, называется бинарная $(n \times m)$-матрица $M = (m_{ij})$, элементы которой удовлетворяют условиям: $m_{ij} = 1$, если $a_i R b_j$; и $m_{ij} = 0$ в противном случае. (Здесь мы считаем, что элементы множеств A и B предварительно пронумерованы и, таким образом, каждому элементу множества A соответствует строка матрицы, а каждому элементу множества B – столбец.)

Для рассматриваемого отношения делимости получаем матрицу, изображенную на рис. 3.4. Отношение $a \leq b$ на том же множестве A имеет нижнюю треугольную матрицу (выше диагонали все элементы – нули, а на диагонали и ниже – все элементы равны 1). Тождественное отношение I множестве A имеет единичную матрицу.

Аналогично бинарным определяются n-арные отношения на множествах A_1, A_2, ..., A_n. А именно, отношением на множествах A_1, A_2, ..., A_n называется всякое подмножество $R \subseteq A_1 \times A_2 \times \ldots \times A_n$. Если при этом все $A_i = A$, $i = 1, 2, \ldots, n$, то соответствующее отношение $R \subseteq A^n$ называется n-местным отношением на множестве A.

Примеры n-местных отношений.

1) Пусть по определению тройка чисел $(a, b, c) \in R_\Delta$, если существует треугольник со сторонами a, b, c. Тогда R_Δ есть трехместное отношение на множестве действительных чисел \mathbb{R}: пусть $(a, b, c, d) \in R$, если $\frac{a}{b} = \frac{c}{d}$.

2. Операции над бинарными отношениями и их свойства

Поскольку отношения определены как множества, то для них можно рассматривать все операции, действующие на множествах. При этом, разумеется, сохраняются все свойства этих операций.

Рассмотрим специальные операции на отношениях.

Пусть имеются отношения $R_1 \subseteq A \times B$ и $R_2 \subseteq B \times C$. Произведением отношений R_1 и R_2 называется отношение $R_1 R_2 \subseteq A \times C$, такое, что $a (R_1 R_2) b$, тогда и только тогда, когда $a R_1 b$ и $b R_2 c$ для некоторого $b \in B$.

Понятно, что, вообще говоря, $R_1 R_2 \neq R_2 R_1$ даже, если оба произведения определены. Другими словами, произведение отношений не обладает свойством
коммутативности. Однако, нетрудно показать, что произведение отношений ассоциативно:
• \((R_1R_2)R_3 = R_1(R_2R_3)\).
Пусть \(R\) – отношение на множестве \(A\). Степень отношения \(R\) называется его произведение с самим собой: \(R^0 = I\) – тождественное отношение, \(R^1 = R\), \(R^2 = RR\) и \(R^n = R^{n-1}R\) для натуральных \(n > 2\).
Одно отношение \(\bar{R}\) на множестве \(A\) (с бинарным отношением \(R\)) называется **рефлексивным замыканием** отношения \(R\), если \(a\bar{R}b\) при некотором натуральном \(n\).
Пусть \(R \subseteq A \times B\). Отношение \(R^I \subseteq B \times A\), такое, что \(R^I = \{(b,a)\mid b \in B, a \in A, aRb\}\), называется **обратным** к отношению \(R\).
Легко видеть, что справедливы свойства
• \((R^I)^{-1} = R\).
• \((R_1R_2)^{-1} = R_1^{-1}R_2^{-1}\).
Если \(R\) – отношение на множествах \(A\) и \(B\), то \(RR^{-1}\) называется **ядром отношения** \(R\). Ядро отношения \(R\) на множествах \(A\) и \(B\) является отношением на множестве \(A\).
Например, рассмотрим отношение \(R\) на булеане \(\Omega(U)\) некоторого универсального множества \(U\) и множестве натуральных чисел \(N\), определив для \(M \subseteq U\) и \(n \in N\), что \(M \cap n\), если мощность множества \(M\) равна \(n\). Тогда ядром этого отношения является отношение равномощности на \(\Omega(U)\).

Отметим также следующие свойства, наличие которых часто исследуется при изучении тех или иных отношений.

Определение. Бинарное отношение \(R\) на множестве \(A\) называется
– **рефлексивным**, если \(\forall a \in A\ aRa\), (у матрицы такого отношения все диагональные элементы равны 1);
– **антирефлексивным**, если \(\forall a \in A\ (a,a) \notin R\);
– **симметричным**, если \(\forall a, b \in A\ aRb\) следует \(bRa\) (матрица такого отношения симметрична);
– **антисимметричным**, если \(\forall a \neq b \in A\ (a,b) \in R\) следует \((b,a) \notin R\) (или, что то же самое, если из \(aRb\) и \(bRa\) следует \(a = b\));
– **транзитивным**, если \(\forall a, b, c \in A\ aRb\) и \(bRc\) следует \(aRc\);
– **связным** (или **полным**), если \(\forall a \neq b \in A\) имеет место \(aRb\) или \(bRa\).
Нетрудно показать, что справедлива

Теорема. Пусть \(R\) – бинарное отношение на множестве \(A\). Тогда
1. \(R\) рефлексивно \(\iff I \subseteq R\);
2. \(R\) антирефлексивно \(\iff I \cap R = \emptyset\);
3. \(R\) симметрично \(\iff R = R^{-1}\);
4. \(R\) антисимметрично \(\iff R \cap R^{-1} \subseteq I\);
5. \(R\) транзитивно \(\iff RR \subseteq R\);
6. \(R\) связно \(\iff R \cup R^{-1} \cup I = U\).
§ 4. Отношения эквивалентности

1. Классы эквивалентности

Определение. Бинарное отношение, которое одновременно рефлексивно, симметрично и транзитивно, называется отношением эквивалентности.
Если R является отношением эквивалентности, то часто вместо aRb пишут $a \sim b$, или просто $a \sim b$, если ясно, о каком отношении эквивалентности идет речь.

Примеры отношений эквивалентности.
1. Отношения подобия треугольников.
2. Отношение тождества на множестве алгебраических выражений.
3. Отношение параллельности на множестве прямых.
4. Отношение учиться в одной группе на множестве студентов.
5. Отношение получить одну и ту же оценку по математике на экзамене.
6. Отношение иметь одинаковый остаток при делении на 7 на множестве целых чисел \mathbb{Z}.
7. На множестве комплексных чисел \mathbb{C} отношение иметь одинаковый модуль: $z_1 \sim z_2$, если $|z_1| = |z_2|$.

Контрпримеры (отношения, не являющиеся отношениями эквивалентности).
1. \leq на множестве чисел (не выполняется свойство симметричности).
2. \bot на множестве прямых (нерефлексивно и нетранзитивно).
3. Отношение делимости : на множестве целых чисел \mathbb{Z} (несимметрично).

Определение. Пусть на множестве A задано отношение эквивалентности \sim и $a \in A$. Множество всех элементов $x \in A$, таких, что $x \sim a$, называется смежным классом множества A, или классом эквивалентности, и обозначается $[a]$.

Свойства классов эквивалентности.
1. $a \in [a]$ (очевидно, так как $a \sim a$, ввиду рефлексивности).
2. Если $a \sim b$, то $[a] = [b]$.

Доказательство. Проверим, что $[a] \subseteq [b]$. Пусть $x \in [a]$. Тогда $x \sim a$. А так как $a \sim b$, то по свойству транзитивности $x \sim b$ и, следовательно, $x \in [b]$. Поскольку отношение эквивалентности симметрично, то $b \sim a$. Далее, поменяв местами a и b и повторив рассуждения, приведенные выше, получим $[b] \subseteq [a]$. Таким образом, $[a] = [b]$.

Замечание. Свойство 2 означает, что любой класс схожести однозначно определяется любым своим представителем. Тем самым, все представители класса равноправны при определении этого класса.

3. Любые два класса эквивалентности либо не пересекаются, либо совпадают.

Доказательство. Пусть существует элемент $c \in A$, такой, что $c \in [a] \cap [b]$. Так как $c \in [a]$, то согласно свойству 2 $[c] = [a]$. А так как $c \in [b]$, то $[c] = [b]$. В результате, $[a] = [b]$.

Определение. Совокупность всех различных смежных классов множества A по отношению эквивалентности \sim называется фактор-множеством множества A и обозначается A/\sim.

Замечание. Свойство 3 показывает, что такая совокупность всех различных смежных классов (т. е., фактор-множество) является разбиением множества A.

17
Обратно, всякое разбиение множества \(A = A_1 \cup A_2 \cup \ldots \cup A_n \), где \(A_i \cap A_j = \emptyset \) \(\forall i \neq j \), определяет соответствующее отношение эквивалентности на множестве \(A \). Действительно, если задано указанное выше разбиение множества \(A \), то положим \(a \sim b \), если \(a \) и \(b \) принадлежат одному и тому же подмножеству \(A_i \). (Свойства рефлексивности и симметричности так заданного отношения очевидны; транзитивность легко вытекает из условия \(A_i \cap A_j = \emptyset \) \(\forall i \neq j \).

2. **Определение.** Бинарное отношение \(R \) на множестве \(A \) называется **отношением частичного порядка**, если \(R \) рефлексивно, транзитивно и антисимметрично. При этом само множество \(A \), на котором задано такое отношение, называется **частично упорядоченным**.

Не следует, однако, думать, что частичная упорядоченность есть собственное свойство конкретного множества. На одном и том же множестве могут быть заданы разные отношения частичного порядка. Например, на множестве натуральных чисел \(\mathbb{N} \) отношением частичного порядка является обычное отношение \(\leq \), а также отношение делимости \(\div \), и вообще любое отношение удовлетворяет условиям рефлексивности, транзитивности и антисимметричности.

Другие примеры отношений частичного порядка

1. На множестве \(\Omega(\mathcal{U}) \) отношение включения \(\subseteq \).
2. Отношение “младше-старшее” на множестве людей.
3. Отношение "начальник-подчиненный" на всяком предприятии.
4. Лексикографический порядок слов в словаре.

Если \(R \) – отношение частичного порядка и \(a R b \), то пишут \(a \leq b \), или просто \(a \leq b \), если понятно, о каком отношении частичного порядка идет речь. При этом говорят, что элемент \(a \) меньше либо равен \(b \). Если, кроме того, \(b \neq a \), то пишут \(a < b \) и говорят, что \(a \) строго меньше \(b \), или, что \(a \) предшествует \(b \).

Если для элементов \(a,b \in A \) имеет место \(a \leq b \), или \(b \leq a \), то говорят, что элементы \(a \) и \(b \) сравнимы. Сразу же отметим, что не всегда любые два элемента частично упорядоченного множества сравнимы (возьмем, к примеру, хотя бы : \(\{1,2,3\} \) и \(\{2,3,4\} \)).

Если \(a < b \) и не существует элемента \(x \), такого, что \(a < x \) и \(x < b \), то элемент \(a \) называется непосредственно меньшим, или непосредственно предшествующим элементу \(b \).

Частично упорядоченные множества (точнее отношения частичного порядка на них) удобно изображать в виде специальных **диаграмм Хасса**. Элементы данного множества \(a, b \) и т. д. изображаются на диаграмме Хасса, как вершины. Но ребрами (без стрелок) соединяются не все пары сравнимых элементов, а только непосредственно меньшие с непосредственно большими. При этом, если, например, \(a \) меньше \(b \), то вершина \(a \) изображается ниже, чем \(b \).

Если элемент \(a \) множества \(A \) такой, что \(\forall x \in A \ x \leq a \), то \(a \) называется **наибольшим**, а если \(\forall x \in A \ a \leq x \), то элемент \(a \) называется **наименьшим**.

В примере 1 наибольшим элементом является число “5”, а наименьшим – “1”; в примере 2 наибольшим является множество \(\{a,b,c\} \), а наименьшим – \(\emptyset \); в примере 3 нет ни наибольшего элемента, ни наименьшего. Таким образом, наибольший и наименьший элементы в частично упорядоченном множестве (даже конечном) существуют не всегда. Тем более, они могут отсутствовать в бесконечных множествах.
Например, в множестве натуральных чисел с обычным отношением порядка есть наименьший элемент (число 1), но нет наибольшего. В множестве целых чисел с таким обычным отношением порядка нет и наименьшего элемента.

Однако, если в частично упорядоченном множестве наименьший (наибольший) элемент существует, то нетрудно видеть, что он единственный.

Если элемент a множества A такой, что $\forall x \in A \ x \leq a$, то a называется наибольшим, а если $\forall x \in A \ a \leq x$, то элемент a называется наименьшим.

В примере 1 (рис. 4.1) наибольшим элементом является число “5”, а наименьшим – “1”; в примере 2 (рис. 4.2) наибольшим является множество $\{a,b,c\}$, а наименьшим – \emptyset; в примере 3 (рис. 4.3) нет ни наибольшего элемента, ни наименьшего. Таким образом, наибольший и наименьший элементы в частично упорядоченном множестве (даже конечном) существуют не всегда. Тем более, они могут отсутствовать в бесконечных множествах. Например, в множестве натуральных чисел с обычным отношением порядка есть наименьший элемент (число 1), но нет наибольшего. В множестве целых чисел с таким обычным отношением порядка нет и наименьшего элемента.

![Примеры](image)

Примеры:

1. $\{1,2,3,4,5\} \subseteq \leq$
2. $\Omega(\{a,b,c\}) \subseteq$
3. $\{2,3,4,5,6,12,15,20,24,45,60,90\}, \ a \mid b$

Однако, если в частично упорядоченном множестве наименьший (наибольший) элемент существует, то нетрудно видеть, что он единственный.

Элемент a частично упорядоченного множества A называется максимальным, если $\forall x \in A \ x \leq a$, либо a и x несравнимы. Элемент a называется минимальным, если $\forall x \in A \ a \leq x$, либо a и x несравнимы.

Из данного определения следует, что наибольший элемент (если только он существует) является максимальным, но – не наоборот. Такое же соотношение имеет место и между наименьшим и минимальным элементами.

В отличие от наибольшего (наименьшего), максимальных (минимальных) элементов может быть несколько. В примере 3 наибольшими элементами являются числа 24, 60 и 90, а наименьшими – 2, 3 и 5. Во множестве $\mathbb{N}\{1\}$ (натуральных чисел
без 1) с отношением "а делит b" минимальными элеменами являются все простые числа, максимальные элементы отсутствуют.

Определение. Отношение R на множестве A называется отношением линейного порядка, а множество A линейно упорядоченным, если R является отношением частичного порядка и если R является связным.

Линейно упорядоченное множество A называется **вполне упорядоченным**, если каждое его непустое подмножество $M \subseteq A$ имеет наименьший элемент.

Например, (\mathbb{N}, \leq) – вполне упорядочено, а (\mathbb{Z}, \leq) – нет.

Если $M \subseteq A$, то верхней (нижней) грань множества M называется любой элемент $a \in A$, такой, что $\forall x \in M$ выполняется условие $x \leq a (a \leq x)$. Точной верхней (нижней (inf)) гранью множества M называется наименьшая верхняя (наибольшая нижняя) грань M.

Например, на множестве $\Omega(U)$ с отношением \subseteq для всякого $M \subseteq \Omega(U)$ существуют точные верхняя и точная нижняя граци. Это, как нетрудно видеть, соответственно объединение и пересечение всех множеств из M. На множестве натуральных чисел с отношением делимости наименьшей нижней и наименьшей верхней гранями данной совокупности чисел являются НОД и НОК этих чисел.

Замечание. Всякий частичный порядок R на конечном множестве A может быть дополнен до линейного порядка \tilde{R}. Это можно сделать следующим образом. В качестве наименьшего элемента выберем любой минимальный элемент a. Непосредственно большим для элемента a будем считать минимальный элемент $b \in A \setminus \{a\}$, непосредственно большим для элемента b будет считать минимальный элемент $c \in A \setminus \{a, b\}$ и так далее.

§ 5. Комбинаторика

1. Размещения

Размещением из n элементов по m называется всякий упорядоченный набор m элементов, выбранных из данных n элементов. Поскольку характер элементов для изучения размещений не существует, то можно считать, что данными n элементами являются первые n чисел натурального ряда. В любом случае, пронумеровав элементы конечного множества, их затем можно отождествить с номерами. Поэтому при записи перестановки указывают соответствующий набор чисел, расположенных в определенном порядке. Например, размещениями из 5 элементов по 3 будут $(2\ 3\ 4), (2\ 4\ 3), (4\ 1\ 5), (5\ 4\ 3)$ и другие. Число различных размещений из n элементов по m обозначается A^n_m. Справедлива

Теорема. $A^n_m = n(n-1)(n-2)\ldots(n-m+1) = \frac{n!}{(n-m)!}.$

Доказательство. Действительно, чтобы получить размещение нужно заполнить m позиций различными числами из множества $\{1, 2, \ldots, n\}$. На первую позицию можно поместить любое из n чисел. Существует n таких возможностей. После того, как первая позиция заполнена, на вторую позицию можно поместить любое число, кроме того, которое уже выбрано и стоит на первой позиции. Поэтому в распоряжении имеется $n-1$ возможностей. Всего количество способов заполнить первые две позиции равно $n(n-1)$. Аналогично рассуждая дальше, находим, что для заполнения третьей позиции
существует \(n - 2 \) возможности, и значит, \(n(n-1)(n-2) \) способов заполнить первые три позиции. Наконец, дойдя до последней \(m \)-ой позиции, для которой остается \(n - m + 1 \) возможностей, находим, что число возможностей заполнить все \(m \) позиций равно \(n(n-1)(n-2) \ldots (n-m+1) = \frac{n!}{(n-m)!} \).

Замечание. Пусть \(X \) и \(Y \) – конечные множества, \(|X| = m \), \(|Y| = n \), \(n \geq m \). Тогда существуют инъективные отображения \(X \to Y \). Их количество равно \(A_n^m \).

Число всех возможных способов разместить \(m \) предметов по \(n \) пронумерованным ящикам, не более одного предмета в ящик, равно \(A_n^m \). (Ящик для первого предмета можно выбрать \(n \) способами, для второго – \(n-1 \) способами и т. д.)

Пример. В соревнованиях участвуют 11 спортсменов, между которыми разыгрывается 3 медали: золотая, серебряная и бронзовая. Сколько возможно различных исходов распределения медалей после окончания соревнований? Это число равно \(A_{11}^3 = 11 \cdot 10 \cdot 9 = 990 \).

Размещением с повторениями из \(n \) элементов по \(m \) называется всякий упорядоченный набор \(m \) элементов, выбранных из данных \(n \) элементов, в котором элементы могут повторяться. Например, размещениями с повторениями из 5 элементов по 3 будут \((2 3 3), (2 4 2), (111), (5 5 5)\) и другие. Число различных размещений с повторениями из \(n \) элементов по \(m \) обозначается \(\tilde{A}_n^m \) и, очевидно, равно \(n^m \).

Число всех возможных способов (без ограничений) разместить \(n \) предметов по \(m \) ящикам равно \(\tilde{A}_n^m \). Число всевозможных функций \(X \to Y \), где \(|X| = m \), \(|Y| = n \), \(n \geq m \), также равно \(\tilde{A}_n^m \).

Пример. При игре в кости выбрасывают два кубика. Сколько различных исходов может получиться? Ответ: \(\tilde{A}_6^2 = 6^2 = 36 \).

2. Перестановки

Перестановкой из \(n \) элементов называется всякий упорядоченный набор из данных элементов (всякое их расположение в определенном порядке). Перестановки можно рассматривать, как размещениями из \(n \) элементов по \(n \). Снова, рассматривая в качестве данных \(n \) элементов числа, при записи перестановки из \(n \) элементов указывается расположение чисел множества \(\{1, 2, \ldots, n\} \) в определенном порядке. Например, перестановками из 5 элементов будут \((1 2 3 4 5), (1 3 2 4 5), (2 4 1 5 3), (5 4 3 2 1)\) и так далее. Число различных перестановок из \(n \) элементов обозначается \(P_n \).

Теорема 1. \(P_n = n! \), где \(n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \) – произведение всех натуральных чисел от 1 до \(n \) (читается: “эн-факториал”).

Доказательство. \(P_n = A_n^n = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 = n! \).

Замечание. Пусть \(X \) – конечное множество, \(|X| = n \). Тогда число биективных отображений \(X \to X \) (т. е. число подстановок степени \(n \)) равно \(P_n = n! \).

Число способов размещения \(n \) предметов в \(n \) пронумерованных ящиках (по одному предмету в ящик) также равно \(P_n = n! \).
Подчеркнем, что число n! с ростом n растет очень быстро. Так, например 4!=24, 5!=120, 6!=720, 7!=5040 и т.д. Для оценки n! при больших n применяется приближенная формула, которая называется формулой Стирлинга:

\[n! \sim \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n. \]

3. Сочетания

Сочетанием из n элементов по m называется всякий неупорядоченный набор m элементов, выбранных из данных n элементов (всякое m-элементное подмножество данного n-элементного множества). Как и в случае размещений сочетания можно представлять в виде таких же наборов натуральных чисел, имея в виду, что расположение этих чисел теперь (в отличие от размещений) не важно. Например, наборы (2 3 4) и (2 4 3) - различные размещения, но одно и то же сочетание. Легко видеть, что из одного и того же сочетания (из n элементов по m) можно путем перестановки элементов получить m! различных размещений. Поэтому число различных размещений из n элементов по m \(A_n^m = \frac{n!}{(n-m)!} \cdot C_n^m \), где через \(C_n^m \) обозначается число сочетаний n элементов по m. Отсюда с учетом теоремы 2 о числе размещений, получим следующее утверждение.

Теорема 1. \(C_n^m = \frac{n!}{m! \cdot (n-m)!} \). \(\)

Из теоремы вытекает очевидное равенство: \(C_n^m = C_{n-m}^m \). Кроме того, с помощью теоремы нетрудно убедиться и в справедливости следующего соотношения: \(C_{n+1}^m = C_n^m + C_n^{m-1} \). Последнюю формулу можно использовать как рекуррентное соотношение для подсчета числа сочетаний из n+1 элементов, если предварительно уже вычислены \(C_n^m \) для всех возможных m. Действительно, если эти значения выписать в строчку, то, складывая соседние числа в этой строчке, получим строчку значений \(C_{n+1}^m \). В результате вычислений, получаем следующую таблицу (рис. 5.1).

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 & 3 & 3 \\
1 & 4 & 6 & 4 & 1 & 5 \\
1 & 6 & 15 & 20 & 15 & 6 \\
1 & 7 & 21 & 35 & 35 & 21 \\
1 & 8 & 28 & 56 & 70 & 56 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

Рис. 5.1

Такой треугольник носит название треугольника Паскаля. Элементы каждой строки треугольника Паскаля представляют собой сочетания \(C_n^m \) при фиксированном
4. Сочетания с повторениями.

Сочетанием с повторениями из \(n \) элементов по \(m \) называется всякий неупорядоченный набор \(m \) элементов, выбранных из данных \(n \) элементов, в котором допускаются повторения элементов. Два сочетания с повторениями из \(n \) элементов по \(m \) равны, только если они составлены из одних и тех же элементов, взятых с одной и той же кратностью. Под кратностью элемента в сочетании понимают количество раз, которое данный элемент встречается в данном сочетании. Число различных сочетаний с повторениями из \(n \) элементов по \(m \) обозначается \(\tilde{C}_n^m \). Справедлива следующая теорема.

Теорема 2. \(\tilde{C}_n^m = C_{n+m-1}^m \).

Доказательство. Каждому сочетанию с повторениями из \(n \) по \(m \) поставим в соответствие вектор длины \(n+m-1 \), состоящий из нулей и единиц, такой, что число нулей между \((i-1)\)-й и \(i\)-й единицами равно кратности элемента \(i \) в данном сочетании для \(2 \leq i \leq n-1 \), а число нулей, стоящих перед первой единицей (после последней \((n-1)\)-й единицы) равно непрямолинейности элемента \(n \) (элемента \(n \)). Легко видеть, что такое отображение обратимо и, значит, биективно. Поэтому число сочетаний с повторениями из \(n \) по \(m \) равно количеству векторов указанного вида. С другой стороны каждому такому вектору можно поставить в соответствие сочетание из \(n+m-1 \) по \(m \) – номерных написанных в одном вектора, которое также является биекцией. Таким образом, требуемое равенство доказано.

Замечание. Число мононотонных функций \(X \to Y \), где \(X \) и \(Y \) – конечные линейно упорядоченные множества, \(|X| = m\), \(|Y| = n\), \(n \geq m \), равно \(\tilde{C}_n^m \).

Число способов разместить \(m \) неразличимых предметов по \(n \) ящикам равно \(\tilde{C}_n^m \).

Пример. Сколько существует способов рассадить \(m \) вновь прибывших гостей между \(n \) гостями, уже сидящими за круглым столом? Между \(n \) гостями имеется \(n \) промежутков, в каждый из которых можно посадить любое количество прибывших гостей, т. е. для каждого из \(m \) гостей нужно выбрать один из \(n \) промежутков (не обязательно, разные промежутки для разных гостей). Таким образом, число способов равно \(\tilde{C}_n^m = \frac{(n+m-1)!}{m!(n-1)!} \).

5. Бином Ньютона. Понятие о производящей функции

Теорема. Для любого натурального \(n \) и любых действительных чисел \(x \) и \(y \) справедливо равенство

\[
(x + y)^n = x^n + C_n^1 x^{n-1} y + C_n^2 x^{n-2} y^2 + \ldots + C_n^{n-1} x y^{n-1} + y^n = \sum_{m=0}^{n} C_n^m x^{n-m} y^m .
\]
Эта формула носит название формулы бинома Ньютона. При \(n=1 \) она тривиальна, а при \(n = 2 \) и \(n = 3 \) – хорошо известна. В общем случае справедливость формулы бинома Ньютона легко доказывается по индукции с применением вышееотмеченных свойств чисел \(C^m_n \), которые часто называют также биномиальными коэффициентами.

Для изучения свойств числовых последовательностей часто применяются такие называемые производящие функции.

Если \((a_m) \ (m = 0, 1, ..., n) \) данная комбинаторная последовательность чисел, то производящей функцией, называется функция вида \(f(x) = \sum_{m=0}^{n} a_m x^m \), где \(a_m(x) \) – некоторые функции.

Например, для исследования чисел \(C^m_n \) рассмотрим производящую функцию

\[
f(x) = \sum_{n=0}^{m} C^m_n x^n.
\]

Согласно формуле бинома Ньютона \(\sum_{m=0}^{n} C^m_n x^m = (1 + x)^n \). Отсюда при \(x = 1 \) получим тождество: \(C^0_n + C^1_n + C^2_n + ... + C^{n-1}_n + C^n_n = \sum_{m=0}^{n} C^m_n = 2^n \); положив \(x = -1 \), получим другое тождество: \(C^0_n - C^1_n + C^2_n - C^3_n + ... = \sum_{m=0}^{n} (-1)^m C^m_n = 0 \).

Интересные тождества можно получить для \(C^m_n \) такими же подстановками, предварительно проинтегрировав или продифференцировав производящую функцию.

6. Числа Стирлинга

Разбиением множества \(X \) называется такое представление \(X = \bigcup_{i=1}^{n} X_i \), что \(X_i \cap X_j = \emptyset \ \forall i \neq j \). Число разбиений \(n \)-элементного множества на \(m \) блоков называется числом Стирлинга второго рода и обозначается \(S^m_n \). По определению

\[
S^0_n = 0 \ \text{при} \ n > 0; \ S^0_0 = 1; \ S^m_n = 0 \ \text{при} \ m > n; \ S^n_n = 1.
\]

Теорема. \(S^m_n = S^{m-1}_{n-1} + m \cdot S^m_{n-1} \).

Доказательство. Пусть \(X - \) множество всех разбиений множества \(\{1,2,...,n\} \). Обозначим через \(X_1 \) множество таких разбиений, которые содержат \(\{n\} \) в качестве отдельного блока, а через \(X_2 \) – множество всех остальных разбиений. Тогда \(X = X_1 \cup X_2 \) и \(X_1 \cap X_2 = \emptyset \). Легко видеть, что мощность множества \(X_1 \) равна \(S^{m-1}_{n-1} \). (Один блок разбиения \(\{n\} \) в данном случае задан и остается распределить \(n-1 \) элементов на \(m-1 \) блоков). Далее, все разбиения множества \(X_2 \) можно получить из разбиений множества \(\{1,2,...,n-1\} \) на \(m \) блоков (число которых равно \(S^{m-1}_{n-1} \)), добавляя элемент \(n \) в какой-то из блоков (имеется ровно \(m \) способов, как это сделать). Так что множество \(X_2 \) состоит из \(m \cdot S^{m-1}_{n-1} \) разбиений. В результате, \(S^m_n = S^{m-1}_{n-1} + m \cdot S^{m-1}_{n-1} \).

На основании полученной рекуррентной формулы можно построить таблицу (аналогичную треугольнику Паскаля) для вычисления чисел Стирлинга второго рода.
Замечание. Пусть X и Y — конечные множества, $|X| = n$, $|Y| = m$, $n \geq m$. Тогда существуют сюръективные отображения $X \to Y$. Их количество равно $S^m_n \cdot m!$. Действительно, чтобы получить сюръективное отображение $X \to Y$ необходимо для каждого из m элементов множества Y указать множество прообразов. Такие множества прообразов представляют собой разбиение множества X (число разбиений равно S^m_n). Для каждого разбиения, устанавливая взаимно однозначное соответствие между блоками разбиения множества X и соответствующими им образами, можно построить $m!$ различных сюръективных отображений. Числа $S(n,m)=S^m_n \cdot m!$ называются числами Стирлинга первого рода.

7. Число Белла

Число всех разбиений n-элементного множества называется числом Белла и обозначается B_n. По определению

$$B_0 = 1 \quad \text{и} \quad B_n = \sum_{m=0}^{n} S^m_n \quad \text{при} \quad n > 0.$$

Теорема. $B_{n+1} = \sum_{k=0}^{n} C^k_n B_k$.

Доказательство. Пусть X — множество всех разбиений множества $\{1,2,...,n+1\}$. Рассмотрим все подмножества множества $\{1,2,...,n+1\}$, содержащие $n+1$. Для каждого такого множества A рассмотрим все разбиения, которые содержат A в качестве отдельного блока. Обозначим множество таких разбиений через X_A. Тогда совокупность всех X_A есть разбиение множества X.

Пусть $|A| = a$. Тогда $|X_A| = B_{n+1-a}$. Кроме того, число таких множеств A (состоящих из a элементов, один из которых равен $n+1$) равно C^{a-1}_n. Следовательно,

$$B_{n+1} = |X| = \left| \bigcup_{A} X_A \right| = \sum_{A} |X_A| = \sum_{A} \sum_{a=1}^{n+1} |X_A| = \sum_{A} \sum_{a=1}^{n+1} C^{a-1}_n B_{n+1-a} = \sum_{k=0}^{n} C^{n-k}_n B_k = \sum_{k=0}^{n} C^k_n B_k.$$

§ 6. Мощности множеств

1. Мощность конечного множества

Как уже отмечалось, если A — конечное множество, то его мощность $|A|$ есть количество элементов, принадлежащих A.

Легко видеть, что

1). Если $A \cap B = \emptyset$, то $|A \cup B| = |A| + |B|$.

2). В общей ситуации: $|A \cup B| = |A| + |B| - |A \cap B|$.

3). $|A \setminus B| = |A| - |A \cap B|$.

Теорема 1. Если $A_1,...,A_n$ — конечные множества, то

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \cdot |A_2| \cdot \ldots \cdot |A_n|.$$

Доказательство непосредственно следует из подсчета числа различных n-ок.
Следствие. Если A — конечное множество, то $|A^n| = |A|^n$.

Теорема 2. Два конечных множества равномощны тогда и только тогда, когда между ними существует биекция.

Доказательство очевидно.

Следствие. Никакое собственное подмножество или надмножество конечного множества A не равномощно множеству A.

Теорема 3. Пусть A — конечное множество, $\Omega(A)$ — множество всех подмножеств (булеан) множества A. Тогда $|\Omega(A)| = 2^{|A|}$.

Доказательство. Рассмотрим $B = \{0, 1\}$ и пусть $|A| = n$. Тогда B^n — множество бинарных n-ок. Существует биекция между $\Omega(A)$ и A^n. Действительно, пусть $A = \{a_1, a_2, ..., a_n\}$ и $M \in \Omega(A)$, т. е. $M \subset A$. Поставим в соответствие множеству M такую n-ку $(*, *, ..., *)$, в которой i-ый элемент равен 1, если $a_i \in M$, и равен 0, если $a_i \notin M$. Обратно, всякой бинарной n-ке однозначно соответствует некоторое множество M, элементы которого определяются по n-ке описаным выше способом. Поскольку биективные множества имеют равное количество элементов (теорема 2) и $|B^n| = 2^n$ (следствие к теореме 1), то $|\Omega(A)| = 2^n$, что и требовалось доказать.

2. **Мощности бесконечных множеств. Счетные множества**

Определение. Говорят, что множества A и B имеют одинаковую мощность (или, что они равномощны), если между A и B можно установить биекцию. Множества, равномощные множеству натуральных чисел, называются **счетными**.

Установить биекцию с множеством натуральных чисел \mathbb{N} фактически означает: сопоставить каждому элементу рассматриваемого множества номер, т. е. пронумеровать все элементы, или другими словами — пересчитать.

Конечное или счетное множество называется **не более чем счетным**.

Примеры и свойства счетных множеств.

- Множество четных чисел $2\mathbb{N}$ — счетное. Действительно, биекцию $2\mathbb{N} \rightarrow \mathbb{N}$ задает, например, отображение $2n \mapsto n$.
- Множество целых чисел \mathbb{Z} счетно. Соответствующей биекцией, очевидно, является следующее отображение

 $\begin{pmatrix}
 ... & -3 & -2 & -1 & 0 & 1 & 2 & 3 & ... \\
 ... & 7 & 5 & 3 & 1 & 2 & 4 & 6 & ...
 \end{pmatrix}$.
- Объединение не более чем счетного множества счетных множеств — счетно.

Доказательство. Можно считать, что все множества и элементы в них уже пронумерованы. Пусть $A_1 = \{a_{11}, a_{12}, a_{13}, a_{14}, \ldots\}$, $A_2 = \{a_{21}, a_{22}, a_{23}, a_{24}, \ldots\}$, $A_3 = \{a_{31}, a_{32}, a_{33}, a_{34}, \ldots\}$, $A_4 = \{a_{41}, a_{42}, a_{43}, a_{44}, \ldots\}$ и т. д. Расположим все элементы объединения $A_1 \cup A_2 \cup A_3 \cup A_4 \cup \ldots$ следующим образом и пронумеруем в порядке, указанном стрелкой (рис. 6.1).
Понятно, что при указанном способе рассмотрения элементов всякий элемент рано
или поздно получит свой номер. Если A_i имеют непустые пересечения и в процессе
нумерации встречаются элементы уже ранее пронумерованные, то их будем пропускать
и переходить к следующим элементам.

- Прямое произведение конечного числа счетных множеств – счетно.

Доказательство. Пусть $A = \{a_1, a_2, \ldots\}$, $B = \{b_1, b_2, \ldots\}$. Элементы декартового
произведения $A \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), \ldots, (a_2, b_1), (a_2, b_2), (a_2, b_3), \ldots\}$
расположим так же, как и в предыдущем примере (в виде бесконечной вправо и вниз
прямоугольной таблицы) и пронумеруем аналогично. Таким образом, произведение
dвух счетных множеств – счетно. Далее по индукции для любого числа множителей.

- Множество Q – рациональных чисел счетно.

Доказательство. Представим множество всех рациональных чисел в виде
$Q = Q_+ \cup Q_- \cup \{0\}$, где Q_+ и Q_- – подмножества положительных и отрицательных
рациональных чисел, соответственно. Достаточно показать, что Q_+ счетно. А это
dействительно так, поскольку

$$Q_+ = \left\{ \frac{1}{1}, \frac{2}{3}, \ldots \right\} \cup \left\{ \frac{1}{2}, \frac{2}{3}, \ldots \right\} \cup \left\{ \frac{1}{3}, \frac{2}{3}, \ldots \right\} \cup \ldots$$

есть объединение счетного количества счетных множеств.

- Множество алгебраических чисел A (корней всевозможных многочленов с целыми
коэффициентами) – счетно (докажите).

3. **Несчетные множества. Мощность континуума**

Теорема (Кантор).

Множество всех действительных чисел из отрезка $[0; 1]$ – несчетно.

Доказательство. Представим все числа в двоичной системе счисления в виде
бесконечных двухзначных дробей (в случае конечных дробей дополним справа нулями
dо бесконечности). Предположим, что количество рассматриваемых чисел счетно.
Расположим их в порядке возрастания номеров:

1) $0, a_{11}a_{12}a_{13}a_{14} \ldots$
2) $0, a_{21}a_{22}a_{23}a_{24} \ldots$
3) $0, a_{31}a_{32}a_{33}a_{34} \ldots$
4) $0, a_{41}a_{42}a_{43}a_{44} \ldots$
5) $\ldots \ldots \ldots$

Здесь везде $a_{ij} = 0$ или 1.

Рассмотрим число $0, a_{11}^* a_{22}^* a_{33}^* a_{44}^* \ldots$, где $a_{ij}^* \neq a_{ij}$ (т.е. $a_{ij}^* = 1$, если $a_{ij} = 0$, и

$$a_{ij}^* = 0, \text{ если } a_{ij} = 1.$$
Легко видеть, что этого числа нет среди пронумерованных, так как оно отличается от 1-го числа в 1-ом разряде, от второго — во 2-ом разряде, от третьего — в 3-ем разряде, … . Полученное противоречие показывает, что множество действительных чисел из отрезка \([0; 1]\) не является счетным.

Определение. Мощность множества действительных чисел отрезка \([0; 1]\) называется мощностью континуума.

Примеры.
1) Множество всех действительных чисел \(\mathbf{R}\) имеет мощность континуума.
2) Множество иррациональных чисел имеет мощность континуума.
3) Множество трансцендентных чисел имеет мощность континуума. Действительно, оно равно \(\mathbf{R}\setminus A\), где \(A\) — счетное множество алгебраических чисел.
4) Множество комплексных чисел \(\mathbf{C}\).
5) Множество непересекающихся окружностей на плоскости.

4. Кардинальные числа. Гипотеза континуума

Теорема. Булеван счетного множества имеет мощность континуума.

Доказательство. Пусть \(A = \{a_1, a_2, \ldots, a_n, \ldots\}\). Построим биекцию \(\Omega(A) \rightarrow [0, 1]\).

Пусть \(M \subseteq A\). Отобразим \(M \mapsto 0, a_1a_2a_3\ldots\), где \(0, a_1a_2a_3\ldots\) — число из отрезка \([0, 1]\), представленное в виде бесконечной дроби в двоичной системе счисления, причем такое, что \(a_i = 1\), если \(a_i \in M\), и \(a_i = 0\), если \(a_i \notin M\). Очевидно, такое отображение обратимо и, значит, биективно. Таким образом, \(\Omega (A)\) и отрезок \([0, 1]\) равномощны, что и требовалось доказать.

Для обозначения мощностей бесконечных множеств используем так называемые кардинальные числа. Мощность счетного множества обозначается \(\aleph_0\) («алеф — ноль»). Мощность континуума — \(\aleph_1\) («алеф — один»).

Поскольку \(|\Omega(A)| = 2^{\aleph_0}\) для конечных множеств и булеван счетного множества имеет мощность континуума, то и для бесконечных множеств имеем: \(2^{\aleph_0} = \aleph_1\).

Можно показать, что вообще (теорема Кантора) булеван всякого множества \(A\) имеет мощность большую чем \(A\) (и всякое его подмножество). Таким образом, \(2^{\aleph_1} = \aleph_2, \ldots, 2^{\aleph_i} = \aleph_{i+1}, \ldots\)

Подобно тому, как не существует наибольшего натурального числа, не существует множества, имеющего наибольшую мощность.

Континуум — гипотеза утверждает, что всякое бесконечное подмножество \(\mathbf{R}\) имеет мощность \(\aleph_0\) или \(\aleph_1\), т.е. нет множеств, мощности которых выражаются промежуточными «дробными» кардинальными числами. В более общей форме, не существует бесконечных множеств, имеющих другие мощности, кроме \(\aleph_i, \ i \in \mathbb{N} \cup \{0\}\).
II. ЭЛЕМЕНТЫ ТЕОРИИ ГРАФОВ

§ 7. Основные определения и типы графов

1. Основные понятия

Пусть \(V \) – конечное непустое множество и \(E \subseteq \{ \{ u, v \} \mid u, v \in V, u \neq v \} \) – множество его двухэлементных подмножеств. Пара \(G = (V, E) \) называется графом. Множество \(V = V(G) \) при этом называется множеством вершин графа \(G \), а его элементы – вершинами; множество \(E = E(G) \) называется множеством ребер графа \(G \), а его элементы – ребрами. И вершины, и ребра графа \(G \) называются его элементами. Поэтому если \(u \) – вершина графа \(G \), а \(e \) – ребро \(G \), то вместо \(u \in V(G) \), \(e \in E(G) \) можно писать \(u \in G, e \in G \).

Если \(e = \{ u, v \} \) – ребро графа \(G \) (пишут также \(e = uv \)), то вершины \(u \) и \(v \) называются концами ребра \(e \).

Графы удобно изображать в виде рисунков, на которых вершинам соответствуют отмеченные точки (или кружочки), а ребрам – непрерывные линии, соединяющие соответствующие вершины (см. рис. 7.1).

Вершины \(u \) и \(v \) графа \(G \) называется смежными, если \(\{ u, v \} \in E(G) \), т.е. если они соединены ребром. Два ребра, в свою очередь, называются смежными, если они имеют общий конец. Если вершина \(v \) является концом ребра \(e \), то \(v \) и \(e \) называются инцидентными.

Мощность \(|V(G)| \) множества вершин \(V(G) \) называется порядком графа \(G \) и обозначается \(|G| \). Если \(|V(G)| = n \) и \(|E(G)| = m \), то граф \(G \) называется \((n, m)\)-графом.

2. Основные типы графов

Граф называется пустым, если \(E(G) = \emptyset \), т.е. если в нем нет ребер. Пустой граф порядка \(n \) обозначается \(\emptyset_n \). Граф \(\emptyset_1 \) называется тривиальным. Граф, в котором любые две вершины соединены ребром, называется полным. Полный граф порядка \(n \) обозначается \(K_n \) (рис. 7.2 – 7.5).

нетрудно подсчитывать, что граф \(K_n \) имеет \(n(n - 1)/2 \) ребер.

Граф такого вида, как на рис. 7.6, называется простой цепью. Простая цепь порядка \(n \) обозначается \(P_n \) (на рис. 7.6 изображена цепь \(P_4 \)). Простая цепь \(P_n \) имеет \(n - 1 \) ребер.
Замкнутые цепи, т.е. такие графы как на рис. 7.7, называются простыми циклами. Простой цикл порядка \(n \) обозначается \(C_n \) (на рис. 7.7 изображена простая цепь \(C_7 \)). Понятно, что простая цепь \(C_n \) имеет столько же ребер, сколько и вершин, т.е. \(n \).

Графы, такие как на рис. 7.8, называются колесами. Колесо порядка \(n+1 \) обозначается \(W_n \) (на рис. 7.8 изображено колесо \(W_7 \)); оно имеет \(2n \) ребер.

Граф называется двудольным, если множество его вершин можно разбить на два непустых подмножества (доли) так, что никакие две вершины одной доли не являются смежными. (Аналогично определяются трехдольные, четырехдольные и т.д. графы.) Таким образом, в двудольном графе смежными могут быть только вершины из разных долей (не обязательно каждая с каждой). Пример двудольного графа см. на рис. 7.9.

Если же в двудольном графе любые две вершины из разных долей соединены ребром, то такой граф называется полным двудольным. Полный двудольный граф с \(n \) вершинами в одной доле и с \(m \) вершинами – в другой обозначается \(K_{n,m} \). См. примеры, приведенные на рис. 7.10 – 7.12.

Графы \(K_{1,n} \) называются звездными графами, или звездами.

Легко видеть, что граф \(K_{n,m} \) является \((n+m, nm)\)-графом, т.е. имеет \(n+m \) вершин и \(nm \) ребер.

Понятно, что существуют графы, которые можно одновременно отнести к нескольким типам. Например, \(K_3 = C_3, \ K_2 = P_2, \ K_{2,2} = C_4, \ K_4 = W_3 \).

3. Обобщения понятия графа

Определение графа в п.1 предполагает, что любая пара вершин может быть соединена не более, чем одним ребром. Однако, существуют задачи и примеры графов,
когда необходимо допускать существование нескольких ребер между одной и той же парой вершин. Такие ребра называются кратными. Граф с кратными ребрами называется мультитрафом (рис. 7.14). Графы, соответствующие исходному определению (в тех случаях, когда нужно подчеркнуть, что в них отсутствуют кратные ребра), называются простыми графами (рис. 7.13). Кроме того, порой приходится рассматривать ребра вида \{v, v\}, соединяющие вершину v саму с собой. Такие ребра называются петлями. Мультитраф с петлями называется псевдографом (рис. 7.15.).

\[(V, E), \text{ где } V \text{ – непустое множество, а } E \subseteq V^2, \text{ называется ориентированным графом (или кратко: орографом). Ребра такого графа представляют собой ориентированные (т.е. упорядоченные) пары вида } (u, v). \text{ При этом, вершина } u \text{ называется началом ребра, а } v \text{ – концом. Ориентированные ребра называются дугами и изображаются в виде линий со стрелками, указывающими направление от начала ребра к концу (рис. 7.16).}

Дуги \((u, v) \) и \((v, u) \), соединяющие одну и ту же пару вершин, но имеющие противоположные направления, называются симметричными.

Можно рассматривать не только простые ортрафы, но также ориентированные мульти- и псевдографы.

Иногда при решении некоторых задач ребрам и (или) вершинам ставят в соответствие некоторые числа. Независимо от их конкретного смысла, такие числа называют весами (вес вершины, вес ребра), а полученный граф называется взвешенным графом.

Как правило, при изучении тех или иных вопросов, зачастую оговаривается (или ясно из контекста) о каких графах идет речь. В этом случае их просто называют графами без приставок "мульти-", "псевдо-" и т.д.

Если не оговорено противное, то везде далее "граф" будет означать "простой граф".

4. Изоморфные графы

Одной из особенностей графов является то, что при их изображении на плоскости совершенно не важно, как расположены вершины друг относительно друга. Поэтому одному и тому графу могут соответствовать различные его изображения. Кроме того, именно такие рисунки, представляющие собой простейший способ задания
графа, зачастую и называют графами. Чтобы отличать рисунки, отвечающие одному и тому же графу, от рисунков, изображающих различные графы, введем следующее понятие.

Определение. Два графа \(G \) и \(H \) называются **изоморфными**, если существует биекция \(f: V(G) \rightarrow V(H) \), сохраняющая смежность, т.е. такое биективное отображение, при котором образы вершин \(v \) и \(u \) графа \(G \) смежны в \(H \) тогда и только тогда, когда \(u \) и \(v \) смежны в графе \(G \). Отображение \(f \), обладающее указанным свойством, называется **изоморфизмом**.

Если графы \(G \) и \(H \) изоморфны, то пишут \(G \cong H \).

Например, все три графа на рис. 7.17-7.19 изоморфны друг другу (изоморфизм определяется нумерацией вершин).

![Рис. 7.17](image1)
![Рис. 7.18](image2)
![Рис. 7.19](image3)

А на рис. 7.20-7.22 представлены попарно неизоморфные графы.

![Рис. 7.20](image4)
![Рис. 7.21](image5)
![Рис. 7.22](image6)

Очевидно, что отношение изоморфности на множестве графов является отношением эквивалентности (оно рефлексивно, симметрично и транзитивно). Следовательно, множество всех графов разбивается на классы изоморфных графов так, что разные классы не пересекаются. Все графы, попадающие в один класс естественно отождествлять, т.е. считать совпадающими (они могут отличаться лишь рисунком или природой своих элементов). В тех случаях, когда нужно подчеркнуть, что рассматриваемые графы отличаются лишь с точностью до изоморфизма, принято говорить об "**абстрактных графах**". По сути дела, абстрактный граф – это класс изоморфных графов.

В некоторых ситуациях все же приходится различать изоморфные графы и тогда возникает понятие "**помеченный граф**". Граф порядка \(n \) называется помеченным, если его вершинам присвоены метки, например, номера 1, 2, 3, …, \(n \). В этом случае вершины графа \(G \) отождествляют с их номерами, т.е. полагают, что \(V(G) = \{1, 2, 3, \ldots, n\} \).
Помеченные графы G и H считаются совпадающими (изоморфными) при дополнительном условии, что $E(G) = E(H)$.

На рис. 7.23 – 7.25 изображены три попарно неизоморфные помеченные графы (которые, очевидно, совпадают друг с другом, если убрать пометки).

Для мульти-, псевдо- и ориентированных графов понятие изоморфности определяется аналогично, как биективность, при которой помимо смежности вершин и ребер сохраняются также кратность ребер, петли и направления дуг.

5. Количество различных графов порядка n

Лемма 1. Число помеченных графов порядка n равно $2^{n(n - 1)}/2$.

Доказательство. Действительно, существует $n(n-1)/2$ пар вершин, для каждой из которых имеется ровно 2 возможности: данная пара вершин соединена ребром или нет. Поэтому, когда вершины помечены, то можно построить ровно $2^{n(n-1)/2}$ различных (с учетом пометки) графов.

Для числа абстрактных (непомеченных) графов порядка n точной формулы не существует. Однако, известно, что оно асимптотически стремится к величине $\frac{2^{n(n-1)/2}}{n!}$.

Это означает, что при $n \to \infty$ предел отношения точного числа неизоморфных простых графов к указанной величине равен 1.

Этот факт представляется достаточно ясным, поскольку n непомеченных вершин графа можно пометить $n!$ способами (количество пометок, очевидно, совпадает с числом перестановок из n элементов). Поэтому следует ожидать, что каждый непомеченный граф даст $n!$ неизоморфных помеченных. Однако, это не всегда так. Например, все пометки пустого (а так же полного) графа приводят к одному и тому же помеченному графу. Никакие другие пометки графа на последнем рисунке не дадут новых помеченных графов. По этой причине в последнем случае из данного непомеченного получаем не $3! = 6$, а только 3 помеченных графа. Таким образом, в случае непомеченных графов указанная величина представляет собой, не точную формулу, а лишь оценку.
§ 8. Основные числовые характеристики и матрицы графа

1. Степени вершин графа

Степенью вершины \(v \) графа \(G \) называется число инцидентных ей рёбер, т.е. число рёбер, выходящих из данной вершины. (В случае псевдографов каждая петля добавляет 2 в степень вершины). Обозначается степень вершины \(v \) графа \(G \): \(\deg_G v \) или просто \(\deg v \), если ясно, о каком графе \(G \) идет речь.

Вершина степени 0 называется изолированной. Вершина степени 1 называется концевой (или висячей). Ребро, инцидентное концевой вершине также называется концевым.

Вершина \(v \) графа \(G \), смежная со всеми другими вершинами \(G \), называется доминирующей. Её степень \(\deg_G v \) очевидно равна \(|G| - 1 \).

Граф \(G \) называется регулярным (или, по-другому, однородным), если степени всех его вершин равны. Эта общая степень всех вершин регулярного графа \(G \) называется степенью регулярного графа \(G \) и обозначается \(\deg G \).

Последовательность степеней вершин графа \(G \), записанная в каком либо порядке называется степенной последовательностью графа \(G \). Например, граф на рис. 8.1 имеет степенную последовательность \((3, 3, 1, 0, 1, 2)\).

Понятно, что изоморфные графы имеют одинаковые (с точностью до порядка следования элементов) степенные последовательности. Однако, из этого совпадения степенных последовательностей двух графов ещё не следует их изоморфность. На рис. 8.2 – 8.3 изображены два неизоморфных регулярных графа степени 2.

Таким образом, степенная последовательность не определяет граф полностью и не может служить способом его задания.

Степенная последовательность не может быть произвольным набором чисел, а обладает определяемыми свойствами.

Лемма 1 ("о рукопожатиях"). Сумма степеней всех вершин графа \(G \) есть число чётное, ровно в два раза большее числа рёбер графа \(G \), т.е.

\[
\sum_{v \in V(G)} \deg_G v = 2 \cdot |E(G)|
\]

Доказательство: Действительно, подсчитаем количество рёбер графа \(G \), просматривая поочередно все вершины графа \(G \) и считая рёбра выходящие из этих вершин. Так как из каждой вершины \(v \) выходит \(\deg_G v \) рёбер, то мы получим сумму:

\[
\sum_{v \in V(G)} \deg_G v
\]

Но при этом каждое ребро будет учтено 2 раза: один раз, когда рассматривался один его конец, другой раз, когда – второй. Таким образом, лемма верна.

Из леммы 1 вытекает
Следствие. В любом графе число вершин нечётной степени является чётным.

Доказательство. В самом деле, иначе, если бы сумма целых чисел содержала нечётное число нечетных слагаемых, то она, очевидно, была бы нечётной, что противоречит лемме о рукопожатиях.

В ориентированных графах для каждой вершины \(v \) дополнительно рассматривается также полустепень исхода и полустепень захода. Полустепень исхода вершины \(v \) называется число дуг графа \(G \), для которых \(v \) является началом, а полустепень захода – число дуг, для которых \(v \) является концом. Обозначаются полустепени захода и исхода графа \(G \) соответственно \(\deg^+v \) и \(\deg^-v \). При этом полная степень \(\deg v = \deg^+v + \deg^-v \). Поскольку каждая дуга имеет ровно одно начало и один конец, то справедлива

Лемма 2. Сумма полустепеней исхода всех вершин графа \(G \) равна сумме полустепеней захода, т.е.

\[
\sum_{v \in V(G)} \deg^+v = \sum_{v \in V(G)} \deg^-v.
\]

2. **Матрица смежности**

Пусть \(G \) – помеченный граф порядка \(n \), \(V(G) = \{1, 2, 3, \ldots, n \} \). Матрицей смежности графа \(G \) называется бинарная \(n \times n \)-матрица \(M(G) = (m_{ij}) \), такая, что \(m_{ij} = 1 \), если вершина \(i \) смежна с вершиной \(j \), и \(m_{ij} = 0 \), в противном случае.

Легко видеть, что матрица смежности простого графа \(G \) является симметричной, с нулями на главной диагонали. Число единиц в каждой строке (каждом столбце) равно степени соответствующей вершины. Понятно, что и обратно, всякой бинарной матрице с указанными свойствами соответствует некоторый простой граф. Таким образом, матрица смежности является одним из способов задания графов.

Для мульти- и псевдографов матрица смежности определяется так, что:

\[
m_{ij} = \begin{cases}
\text{число ребер, соединяющих вершины } i \text{ и } j, & i \neq j; \\
2 \cdot (\text{число петель, инцидентных вершине } i), & \text{если } i = j.
\end{cases}
\]

Для ориентированного графа \(G \):

\[
m_{ij} = \begin{cases}
1, & \text{если } (i, j) \text{ является дугой } (i \text{ - начало, } j \text{ - конец}); \\
0, & \text{иначе}.
\end{cases}
\]

Таким образом, всякая бинарная матрица является матрицей смежности соответствующего ориентированного графа. Например, матрица, приведенной на рис. 8.4, соответствует граф, изображенный на рис. 8.5.

![Рис. 8.4](image)

Рис. 8.4

Абстрактный граф приводит к различным матрицам смежности в зависимости от нумерации вершин.

Теорема. Графы изоморфны тогда и только тогда, когда их матрицы смежности получаются друг из друга путём парных перестановок одинаковых строк и столбцов.

35
Доказательство. Действительно таким перестановкам (переставляются одновременно, как одна операция, две строчки и два столбца с одинаковыми номерами) соответствует перенумерация вершин графа, что очевидно приводит к изоморфному графу.

Из теоремы, в частности, следует, что ранги матриц смежности изоморфных графов совпадают. Этот общий ранг различных матриц смежности изоморфных графов называется рангом соответствующего абстрактного графа G и обозначается $\text{rg} \ G$.

Совпадают такие характеристические многочлены и собственные значения матриц смежности изоморфных графов, которые называются, соответственно, характеристическим многочленом и спектром графа G.

Для двудольного графа G, с долями $V_1 = \{x_1, x_2, \ldots, x_n\}$ и $V_2 = \{y_1, y_2, \ldots, y_m\}$ рассматривается также приведённая $n \times m$-матрица смежности, такая, что $m_{ij} = 1$, если вершина x_i смежна с y_j, и $m_{ij} = 0$ в противном случае.

Для взвешенных графов вместо матрицы смежности обычно рассматривается матрица весов, элементы которой $m_{ij} = \text{вес рёбра } \{i,j\}$. Отсутствующим рёбрам присваивается вес ∞ или 0, в зависимости от решаемой задачи.

3. Матрица Кирхгофа

Пусть G – помеченный граф, $V(G) = \{1, 2, 3, \ldots , n\}$. Матрицей Кирхгофа графа G называется $n \times n$-матрица $K(G) = (k_{ij})$, такая, что:

$$k_{ij} = \begin{cases} -1, & \text{если вершина } i \text{ смежна с вершиной } j; \\ 0, & \text{если } i \neq j \text{ и вершины } i \text{ и } j \text{ не смежны;} \\ \deg i, & \text{если } i = j. \end{cases}$$

Матрица Кирхгофа $K(G)$ симметрична, на главной диагонали расположена степень последовательности графа G. Кроме того, сумма элементов каждой строки (столбца) равна 0. (Матрица с последним условием обладает тем свойством, что алгебраические дополнения всех элементов такой матрицы равны между собой.) Как и для матрицы смежности, справедлива

Теорема. Графы изоморфны тогда и только тогда, когда их матрицы Кирхгофа получаются друг из друга путём парных перестановок одинаковых строк и столбцов.

4. Матрица инцидентности

Пусть $G = (n,m)$-граф, $V(G) = \{1, 2, 3, \ldots , n\}$, $E(G) = \{e_1, e_2, e_3, \ldots , e_m\}$. Матрицей инцидентности графа G называется бинарная $n \times m$-матрица $I(G) = (i_{ij})$, такая, что:

$$i_{ij} = \begin{cases} 1, & \text{если вершина } i \text{ инцидентна ребру } e_j; \\ 0, & \text{иначе.} \end{cases}$$

Понятно, что такая матрица имеет ровно по две единицы в каждом столбце (веськово ребро имеет два конца – две инцидентные данному ребру вершины). Число единиц в каждой строке матрицы инцидентности равно степени соответствующей вершины. Матрицы инцидентности изоморфных графов получаются друг из друга путём обычных (непарных, в отличие от матрицы смежности и матрицы Кирхгофа) перестановок строк и столбцов.
Для ориентированного графа:

\[
I_{ij} = \begin{cases}
1, & \text{если вершина } i \text{ - начало дуги } e_j, \\
-1, & \text{если вершина } i \text{ - конец дуги } e_j, \\
2, & \text{если дуга } e_j \text{ - петля, начало и конец которой есть вершина } v_i, \\
0, & \text{инчее, вершина } i \text{ и дуга } e_j \text{ не инцидентны.}
\end{cases}
\]

Существует следующая связь между матрицей инцидентности \(I \) и матрицей Кирхгофа \(K \) графа \(G \). Пусть \(G \) – простой граф. Превратим его в ориентированный граф задав на каждом ребре (произвольную) ориентацию, другими словами, расставим стрелки на всех рёбрах графа \(G \). Полученный граф называется ориентацией графа \(G \).

Теорема. Если \(K \) – матрица Кирхгофа графа \(G \) и \(I \) – матрица инцидентности какой-либо его ориентации, то \(K = I \cdot I^t \), где \(I^t \) – транспонированная матрица.

\[\text{ § 9. Подграфы и операции на графах}\]

1. **Подграфы**

Граф \(H \) называется подграфом графа \(G \) (пишут: \(H \subseteq G \)), если \(V(H) \subseteq V(G) \) и \(E(H) \subseteq E(G) \). Если для подграфа \(H \) графа \(G \) \(V(H)=V(G) \), то \(H \) называется основным подграфом.

Если подграф \(H \) содержит все рёбра графа \(G \), оба конца которых принадлежат множеству \(U \subset V(G) \), то \(H \) называется подграфом порождённым (индуцированным) множеством вершин \(U \). Такой подграф \(H \) обозначается: \(G(U) \).

Рассматриваются также подграфы, порождённые данным подмножеством рёбер графа \(G \), которые вместе с указанными рёбрами содержат все их концы в качестве множества вершин.

Важным классом подграфов являются подграфы, полученные из данного графа \(G \) удалением некоторой вершины \(v \) (при этом удаляются также все рёбра, инцидентные \(v \)). Обозначение полученного подграфа: \(G_v \). Понятно, что \(G_v = G(V(G) \setminus \{v\}) \).

Для графа \(G \) (рис. 9.1) на рис. 9.2 – 9.5 приведены примеры вышеуказанных подграфов.

\[\text{ Рис. 9.1 Граф G}\]

\[\text{ Рис. 9.2 Пример подграфа G(1, 2, 3, 5)}\]

\[\text{ Рис. 9.3 Основной подграф G(1, 2, 3)}\]

\[\text{ Рис. 9.4 Граф G5}\]

2. **Операции над графами**

1. Удаление вершин (см. выше). Удаление ребра (при этом концы ребра не удаляются), а также добавление ребра. Другие переходы к подграфам или надграфам.
2. Дополнение графа. Граф \(\overline{G} \) называется дополнением графа \(G \), если \(V(\overline{G}) = V(G) \), причём вершины \(u \) и \(v \) являются смежными в графе \(\overline{G} \) тогда и только тогда, когда они не смежны в \(G \). Таким образом, \(G \) и \(\overline{G} \) не имеют общих рёбер, а \(E(G) \cup E(\overline{G}) \) с общим множеством вершин образует полный граф (рис. 9.6).

3. Объединение графов. Объединением графов \(G_1 \) и \(G_2 \) называется граф \(G_1 \cup G_2 \), в котором \(V(G_1 \cup G_2) = V(G_1) \cup V(G_2) \) и \(E(G_1 \cup G_2) = E(G_1) \cup E(G_2) \).

4. Пересечение графов. Пересечением графов \(G_1 \) и \(G_2 \) называется граф \(G_1 \cap G_2 \), в котором \(V(G_1 \cap G_2) = V(G_1) \cap V(G_2) \) и \(E(G_1 \cap G_2) = E(G_1) \cap E(G_2) \) (рис. 9.7).

5. Соединение графов. Соединением графов \(G_1 \) и \(G_2 \) называется объединение \(G_1 \cup G_2 \), дополненное всеми рёбрами, соединяющими вершины \(G_1 \) с вершинами \(G_2 \). Обозначается соединение: \(G_1 + G_2 \) (рис. 9.8).

В частности, если \(G_i \) – \((n_i, m_i)\)-графы, не имеющие общих вершин, то \(G_1 + G_2 \) будет \((n_1+n_2, m_1 + m_2 + n_1 \cdot n_2)\)-графом. Так, например, \(K_p \cdot K_q = 0_p + 0_q = \overline{K}_p + \overline{K}_q \).

Рассматриваются также другие более сложные операции на графах, такие как, произведение графов, прямое произведение и др.
§ 10. Связные графы и расстояние в графах

1. Маршруты в графах. Связные графы

Пусть G — мульти- или псевдограф. Последовательность вершин и рёбер вида

$$(v_1, e_1, v_2, e_2, v_3, e_3, ..., e_n, v_{n+1})$$

такая, что $e_i = \{v_i, v_{i+1}\}$ — ребро в графе G, соединяющее v_i с v_{i+1} называется (v_1, v_{n+1})—маршрутом. Вершина v_1 при этом называется началом маршрута, а v_{n+1} — концом маршрута. Число рёбер n в маршруте называется длиной маршрута. Во взвешенном графе за длину маршрута принимается сумма весов входящих в маршрут рёбер.

В простом графе, когда смежные вершины соединены только одним ребром, для задания маршрута достаточно указать только последовательность вершин (разумеется, любые две соседние вершины в этой последовательности должны быть смежными). В этом случае (v_1, v_{n+1}) — маршрут обозначается: $(v_1, v_2, v_3, ..., v_{n+1})$.

В маршруте вершины и рёбра могут повторяться. Если в маршруте все рёбра различны, то он называется цепью. Если кроме того в цепи различные и все вершины (кроме, может быть, первой и последней), то такой маршрут называется простой цепью.

Маршрут называется циклическим, если в нём начало совпадает с концом. Циклический маршрут являющийся цепью называется циклом, а являющийся простой цепью — простым циклом.

Минимальная из длин всех циклов графа называется охватом графа.

Граф G называется связным, если в нём для любых двух вершин u и v существует (u, v)-маршрут.

В ориентированных графах рассматриваются ориентированные маршруты, в которых для любой пары соседних вершин v_i и v_{i+1} существует дуга (v_i, v_{i+1}) (v_i — начало дуги, v_{i+1} — конец). Другими словами — это маршруты, по которым можно передвигаться от начала маршрута к концу с соблюдением ориентации (стрелок).

Орграф, в котором для любой пары вершин u и v существуют ориентированные (u, v)- и (v, u)-маршруты, называется сильно связным. Если же для любой пары вершин u и v существует ориентированный (u, v)- или (v, u)-маршрут, то такой орграф называется односторонне связным. Орграф в котором любую пару вершин можно соединить маршрутом без соблюдения ориентации (т.е. являющийся связным, если убрать на всех дугах стрелки) называется слабо связным.

Легко видеть, что всякий (u, v)-маршрут содержит (u, v)-цепь. Для того, что бы её получить, достаточно в маршруте исключить дублирование участков, которые проходятся несколько раз. Кроме того, если из (u, v)-цепи удалить все промежуточные циклические участки, то получим простую (u, v)-цепь.

Таким образом, можно дать эквивалентное определение связности: граф называется связным, если в нём любую пару вершин u и v можно соединить простой (u, v)-цепью.

Для связных графов вводиться также количественная характеристика их связности. Связностью графа G называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу. Так, например, полный граф K_n имеет связность $n-1$; простая цепь P_n имеет связность 1; простой цикл C_n имеет связность 2; колесо W_n имеет связность 3.

Наименьшее число рёбер графа G, удаление которых приводит к несвязному подграфу, называется ребёровной связностью графа G.
2. Компоненты связности. Связность графа и его дополнения

Максимальные связные подグラФы графа G называются его компонентами связности. Здесь "максимальные" означает: не содержаться в других подграфах с большим числом элементов.

На множестве вершин $V(G)$ определим биномиальное отношение. Положим $v\sim u$, если в G существует (v, u)-маршрут. Легко видеть, что это отношение является отношением эквивалентности, причем $v\sim u$ тогда и только тогда, когда вершины v и u содержатся в одной и той же компоненте связности. Таким образом, совокупность компонент связности есть разбиение данного графа (объединение компонент дает весь граф; различные компоненты связности не пересекаются).

Граф \hat{G} называется графом достижимости графа G (или транзитивным замыканием графа G), если $V(\hat{G}) = V(G)$ и в графе \hat{G} вершины v и u соединены ребром тогда и только тогда, когда в G существует (u, v)-маршрут. Другими словами, в графе \hat{G} v и u смежны, если $v\sim u$ в графе G (в смысле отношения эквивалентности, введенного выше).

Понятно, что граф G связан в том и только том случае, когда $\hat{G}=K_n$ — полный граф. В случае же, когда G не является связным, \hat{G} является объединением нескольких полных подграфов, которые являются его компонентами связности.

Теорема. Всякий граф или его дополнение является связным.

Доказательство. Предположим, что G — не связный граф, и докажем, что тогда его дополнение \bar{G} есть связный граф. Действительно, пусть A — множество величий какой-либо компоненты связности графа G, а $B=V(G)\setminus A$ — остальные вершины. Тогда в графе \bar{G} всякая вершина $a\in A$ соединена ребром с каждой вершиной $b\in B$. Пусть $ai, aj \in A$, тогда (ai, b, aj) — маршрут, соединяющий ai и aj (здесь b — любая вершина из B). Аналогично, если $bi, bj \in B$, то (bi, a, bj) — маршрут соединяющий bi и bj, (a — любая вершина из A). Таким образом, для любых двух вершин в \bar{G} существует соединяющий их маршрут (длины не более 2), что и требовалось доказать.

3. Расстояния на графах

Пусть G — связный граф и u, v — его вершины. Длина кратчайшего (u,v)-маршрута (понятно, что он является простой цепью) называется расстоянием между u и v и обозначается $d(u,v)$. По определению полагают, что $d(u,u)=0$ для всякой вершины u.

Легко видеть, что отображение d обладает обычными свойствами метрики:

1. $d(u,v) \geq 0$, причём $d(u,v)$, только если $u=v$.
2. $d(u,v)=d(v,u)$.
3. $d(u,v)+d(v,w) \geq d(u,w)$ (неравенство треугольника).

Удалённостью (или, по-другому, экцентрицитом) вершины v графа G называется наибольшее из расстояний от данной вершины до других вершин графа G:

$$e(v) = \max_{u \in V(G)} d(v,u).$$

Радиусом графа G называется наименьшая из удалённостей его вершин:

$$R(G) = \min_{v \in V(G)} e(v) = \min_{v \in V(G)} \max_{u \in V(G)} d(v,u).$$
Центром графа G называется наибольшая из удалённостей его вершин:
$$D(G) = \max_{v \in V(G)} \max_{u \in V(G)} d(v, u).$$

Вершина v графа G, удалённость которой минимальная (и значит, равна радиусу), называется центром графа G. Точно так же, вершина, удалённость которой максимальная в графе (и значит, радиан диаметру), называется периферийным центром.

Центр графа не обязательно единственный. Так, например, в полном графе K_n или простом цикле C_n удалённости всех вершин равны, и значит, радиус равен диаметру. Поэтому в этих графах все вершины являются одновременно центрами и периферийными центрами.

Задача нахождения центральных вершин графа постоянно возникает в практической деятельности людей. Пусть, например, граф представляет собой сеть дорог, т.е. вершины его соответствуют отдельным населенным пунктам, а ребра — дорогам между ними. Требуется оптимально разместить больницы, магазины, пункты обслуживания. В подобных ситуациях критерий оптимальности часто заключается в оптимизации «наихудшего» случая, т.е. в минимизации расстояния от места обслуживания до наиболее удаленного пункта. Следовательно, местами размещения должны быть центральные вершины.

Реальные задачи (их называют минимаксными задачами размещения) отличаются от этой идеальной тем, что приходится еще учитывать другие обстоятельства – фактические расстояния между отдельными пунктами, стоимость, время проезда и прочее. Для того, чтобы учесть это, используют взвешенные графы.

Можно показать, что для связного графа G справедливы следующие соотношения:
1. $R(G) \leq D(G) \leq 2R(G)$.
2. $D(G) \leq \text{rg } G$.

4. **Метод поиска в ширину**

Метод поиска в ширину позволяет легко найти расстояние от данной вершины до других вершин графа, и значит, определить удалённость данной вершины. Применив его для всех вершин графа, получим удалённости всех вершин, зная которые, можно найти радиус, диаметр графа, а так же центры и периферийные центры.

Проиллюстрируем данный метод на следующем примере (см. рис. 10.1).

Суть метода заключается в расстановке меток, которая осуществляется по следующему правилу. Предположим, нужно найти расстояние от вершины v_1 до других вершин. Присвоим вершине v_1 метку 0. Всем вершинам, смежным с v_1, присвоим метку 1. Затем всем вершинам, смежным с вершинами имеющими метку 1 (которые ещё не имеют метки), присвоим метку 2 и т.д., пока все вершины не получат меток. Легко видеть, что метка вершины будет равна расстоянию от v_1 до данной вершины, а наибольшая из меток равна удалённости вершины v_1. Так, в
рассматриваемом примере \(e(v_1) = 4 \). Метод позволяет так же находить кратчайшие цепи между вершинами. Если, например, нужно найти кратчайшую цепь от \(v_1 \) до \(v_{10} \), то после расстановки меток двигаемся в обратном порядке от вершины \(v_{10} \), переходя каждый раз к вершине с меньшей меткой (такая обязательно найдёться; если их несколько, то выбираем любую): \(v_{10} \rightarrow v_7 \rightarrow v_4 \rightarrow v_2 \rightarrow v_1 \). В результате, получаем кратчайшую \((v_1, v_{10}) \)-цепь: \((v_1, v_2, v_4, v_7, v_{10}) \).

Подсчёты удалённостей остальных вершин в данном приводят к следующим результатам: \(e(v_2) = 3, e(v_3) = 3, e(v_4) = 3, e(v_5) = 3, e(v_6) = 3, e(v_7) = 3, e(v_8) = 4, e(v_9) = 4, e(v_{10}) = 4 \).

Таким образом, для данного графа \(G \) имеем: \(R(G) = 3; D(G) = 4 \); вершины \(v_1, v_9, v_{10} \) являются периферийными центрами, а все остальные вершины – центрами.

5. Выяснение вопросов связности, достижимости и расстояний на графе по матрице смежности

Пусть \(G \) – помеченный граф, \(V(G) = \{1, 2, \ldots, n\} \) и \(M = (m_{ij}) \) – матрица смежности графа \(G \). Умножим матрицу \(M \) на себя, т.е. вычислим элементы матрицы \(M^2 \) и выясним их смысл. Элемент \(m_{i,j}^{(2)} \) матрицы \(M^2 \) в \(i \)-той строке \(j \)-том столбце равен:

\[
m_{i,j}^{(r)} = \sum_{k=1}^{n} m_{i,k} m_{k,j}.
\]

Произведения \(m_{i,k} m_{k,j} \) будут равны единице только в том случае, когда вершина \(k \) является смежной с обеими вершинами \(i \) и \(j \), т.е. если существует маршрут длины 2 соединяющий \(i \) через \(k \) с \(j \). В остальных случаях \(m_{i,k} m_{k,j} = 0 \). Поэтому \(m_{i,j}^{(2)} \) есть число маршрутов длины 2, соединяющих вершину \(i \) с вершиной \(j \). Диагональные элементы матрицы \(M^2 \), в частности, совпадают со степенями соответствующих вершин. Точно так же можно показать, что элементы матрицы \(M^3 \) суть количества маршрутов длины 3, соединяющие соответствующие пары вершин; элементы \(M^4 \) – количества маршрутов длины 4, и т.д.

Таким образом, расстояние между вершинами \(i \) и \(j \) равно наименьшей степени \(r \) матрицы \(M \) такой, что \((i,j) \)-элемент матрицы \(M^r \) отличен от 0. Так как расстояния не могут быть больше \(n-1 \), где \(n \) – порядок графа, то для того, чтобы найти все расстояния и выяснить другие связанные с ними вопросы, достаточно рассмотреть степени \(r \leq n-1 \). Если \(m_{i,j}^{(r)} = 0 \) для всех \(1 \leq r \leq n-1 \), то не существует маршрута между вершинами \(i \) и \(j \), и значит, граф не связан.

§ 11. Деревья и остовы

1. Критерии дерева

Деревом называется связный граф без циклов. Произвольный (не обязательно связный) граф без циклов называется лесом. Понятно, что лес состоит из деревьев, которые являются для него компонентами связности.

Лемма. В любом дереве порядка \(n \geq 2 \) имеется по крайней мере две концевые вершины.

Доказательство. Рассмотрим в дереве простую цепь максимальной длины. Это не цикл, так как в дереве вообще нет циклов. Пусть \(u \) и \(v \) – начало и конец данной цепи. Тогда \(u \) и \(v \) – концевые вершины. Действительно, предположим противное, что, например, \(v \) не является концевой. Тогда \(v \) смежна еще с какой-нибудь вершиной \(w \)
помимо v_0 — предыдущей в цепи (рис. 11.1). Если w принадлежит цепи, то граф имеет цикл, что невозможно, так как он дерево. Если же w не принадлежит цепи, то цепь можно удлинить, добавляя ребро $\{v, w\}$ и вершину w. А это противоречит тому, что рассматриваемая цепь имеет максимальную длину. Таким образом, утверждение леммы верно.

Теорема. Пусть $G = (n, m)$-граф. Следующие утверждения равносильны:

a) G — дерево;
b) любые две различные вершины графа G соединены единственной простой цепью;
c) G — граф без циклов, но если любую пару несмежных вершин соединить ребром, то появится ровно один цикл;
d) G — связный граф, но перестанет быть связным после удаления любого ребра;
e) G — связный граф, причем $m = n - 1$.

Доказательство.

a) \Rightarrow b). Пусть u и v — две вершины дерева G. По крайней мере одна простая цепь между u и v существует ввиду связности G. Если бы существовала еще хотя бы одна, то объединив их мы получили бы замкнутый маршрут, содержащий цикл, что невозможно, так как G — граф без циклов.

b) \Rightarrow c). В G нет циклов, иначе бы любые две вершины в цикле были бы соединены по крайней мере двумя простыми цепями (из которых состоит цикл), что противоречит b). Пусть u и v — две несмежные вершины графа G. Согласно b) существует единственная простая (u, v)-цепь. Поэтому если провести ребро $\{u, v\}$, получим единственный цикл в G.

c) \Rightarrow d). G — связный граф, иначе соединив ребром две вершины из разных компонент связности, мы не получили бы цикл, что противоречит c). Удалив любое ребро, мы получим несвязный граф, иначе бы удаленное ребро принадлежало циклу, что также противоречит c).

d) \Rightarrow e). Достаточно показать, что в G нет циклов. Действительно, если бы был хотя бы один цикл, то удаление любого ребра из цикла нарушило бы связность графа G.

Индукция по n. При $n = 2$ единственным деревом является простая цепь P_2, которая имеет $m = 1$ ребро, и равенство $m = n - 1$ очевидно.

Предположим, что утверждение d) верно для любого дерева порядка n. Докажем что тогда оно верно и для дерева порядка $n + 1$. Рассмотрим такое дерево. Оно содержит концевую вершину (обозначим ее через v), которая существует согласно лемме. Удалим v вместе с инцидентным ей концевым ребром. Полученный граф является деревом порядка n и по индукционному предположению имеет $n - 1$ ребро. Значит, исходное дерево порядка $n + 1$ имело n ребер. Тем самым и для исходного дерева требуемое соотношение верно.

e) \Rightarrow а). Индукция по n. При $n = 2$ утверждение а) (то, что G — связный граф без циклов, если в нем две вершины и одно ребро) очевидно.
Предположим, что а) верно (при условиях d) для всех графов порядка n. Докажем, что тогда связный граф порядка n + 1, у которого n ребер, также является деревом. Действительно, такой граф имеет концевую вершину. Иначе степени всех вершин были бы ≥ 2 и, значит, по лемме о рукопожатиях такой граф содержал бы не менее \(\frac{2(n + 1)}{2} = n + 1 \) ребер, что противоречит d). Далее, как и в предыдущем случае, удалим концевую вершину и воспользуемся индукционным предположением.

Теорема (Кэли). Число неизоморфных помеченных деревьев порядка n равно \(n^{n-2} \).

2. Корневое дерево

Корневое дерево есть специальный способ представления (изображения) дерева. Выбирается некоторая вершина, которая именуется «корнем дерева». При изображении все вершины располагают по ярусам, следующим образом. На нулевом ярусе располагается корень дерева (см. рис. 11.2). На 1 ярусе располагают все вершины дерева, смежные с корнем; затем на 2 ярусе — все вершины, смежные с вершинами 1-го яруса; на 3-ем — вершины, смежные с вершинами 2-го яруса и так далее.

Каждому корневому дереву ставится в соответствие его бинарный код, который строится в процессе полного обхода дерева. Обход начинается с корня и заканчивается корнем. Обход осуществляется слева направо, т.е. сначала проходит левая ветвь, затем следующая и так далее, в конце — самая правая. При обходе необходимо подниматься по ветви (см. рис. 11.3) до тех пор, пока это возможно. Затем по ветви опускаются до тех пор, пока не появится возможность продолжить подъем по еще не пройденной ветви. При подъеме с одного яруса на следующий в код дерева записывается 1, при опускании с яруса на ярус — 0. Так дерево на рисунке имеет код (1110110100011011011000100).

Легко видеть, что код дерева обладает следующими свойствами:
- длина кода дерева порядка n равна \(2(n - 1) \);
- число нулей равно числу единиц;
- если обрубить код на каком-либо месте, то число единиц на участке от начала кода до данного места не меньше числа нулей на этом участке (разность между этим количеством совпадает с ярусом, на котором прерван обход).

Обратно, по всякому бинарному набору, обладающему этими свойствами, можно построить корневое дерево, код которого совпадает с данным набором.
3. **Типы вершин дерева, радиус и центры**

Вершины дерева можно разбить на **типы**. Всем концевым вершинам присваивается тип 0. Удалим все концевые вершины вместе с инцидентными им ребрами. Всем концевым вершинам полученного подグラФа (он также будет деревом) присваивается тип 1. После удаления концевых вершин полученного подграфа, концевым вершинам нового подграфа присваивается тип 2, и так далее пока не будут рассмотрены все вершины (см. рис. 11.4). В конце процесса удаления концевых вершин и присвоения типа новым концевым вершинам, мы получим граф K_1 или K_2. Вершины этого графа (K_1 или K_2) очевидно являются центрами данного дерева. Действительно, их удаленности наименьшие и совпадают с их типом (в случае K_1) или на 1 больше типа (в случае K_2). Таким образом, справедлива следующая теорема.

Теорема. Существует не более двух центров дерева. Они совпадают с вершинами максимального типа. Радиус дерева $R(G)$ равен r, если центр единственный и его тип r, или $r+1$, если центра два и их тип r.

4. **Остовы графа, циклический ранг и ранг разрезов**

Пусть G – произвольный (n, m)-граф с k компонентами связности. Если G – не лес, то в нем (его компонентах связности) существуют циклы. Рассмотрим какой-либо цикл и удалим из него некоторое ребро. При этом количество компонент связности не увеличится. Если после этого еще останутся циклы, то рассмотрим следующий из них и снова удалим какое-либо его ребро. Продолжим этот процесс до тех пор, пока не исчезнут все циклы. Полученный в результате подграф, который, очевидно, является лесом и имеет столько же компонент связности, как и исходный граф G, называется **остовом** графа G.

Теорема. Число ребер графа G, которые нужно удалить для получения остова, не зависит от способа удаления и равно $m - n + k$.

Доказательство. Пусть H_i, $i = 1, k$ – компоненты связности графа G, и пусть $H_i = (n_i, m_i)$-графы. После удаления ребер из циклов компоненты H_i она превратится в дерево, которое (см. теорему о критериях дерева) имеет $n_i - 1$ ребер. Значит, из H_i необходимо удалить $m_i - (n_i - 1)$ ребер. Суммируя по всем компонентам, находим, что для получения остова из графа G необходимо удалить $\sum_{i=1}^{k} (m_i - n_i + 1) = \sum_{i=1}^{k} m_i - \sum_{i=1}^{k} n_i + \sum_{i=1}^{k} 1 = m - n + k$ ребер, что и требовалось доказать.
Определение. Число \(v(G) = m(G) - n(G) + k(G) \) ребер, которые необходимо удалить из графа \(G \) для получения остова, называется циклическим рангом (или цикломатическим числом) графа \(G \). Число ребер в остове графа \(G \), которое в различных остовах одно и то же и равно \(n(G) - k(G) \), называется рангом разрезов (или коциклическим рангом) графа \(G \).

Легко видеть, что справедливы следующие утверждения:
1. Граф \(G \) является лесом тогда и только тогда, когда \(v(G) = 0 \).
2. Граф \(G \) содержит единственный цикл тогда и только тогда, когда \(v(G) = 1 \).
3. Граф, в котором число ребер не меньше, чем число вершин, обязательно содержит цикл.

Имеют место также следующие теоремы.

Теорема (Кирхгоф). Число остовов в связанном графе \(G \) порядка \(n \geq 2 \) равно алгебраическому дополнению любого элемента матрицы Кирхгофа \(K(G) \) графа \(G \).

Теорема. Орграф сильно связан, если в нем существует остовой циклический маршрут.

5. Задача о минимальном остове.

Задача формулируется следующим образом: во взвешенном связанном графе требуется найти остов минимального веса. Данная задача имеет большое практическое значение: проектирование линий электропередачи, трубопроводов, сетей железных дорог и т.д.

Существуют достаточно простые алгоритмы решения этой задачи.

Алгоритм Краскала

1 шаг. Строим остовой подграф \(T_1 = O_n \cup e_1 \), где \(O_n \) — пустой граф порядка \(n = |G| \), а \(e_1 \) — ребро графа \(G \) минимального веса. Далее, для \(i = 2, n - 1 \).

2 шаг. Строим \(T_i = T_{i-1} \cup e_i \), где ребро \(e_i \) имеет минимальный вес среди ребер, не входящих в \(T_{i-1} \) и не составляющее циклов с ребрами подграфа \(T_{i-1} \).

Легко видеть, что граф \(T_{n-1} \) является искомым остовом.

Аналогичную структуру имеет и следующий алгоритм.

Алгоритм Прима

1 шаг. Строим \(T_1 = e_1 \) — ребро графа \(G \) минимального веса. Далее, для \(i = 2, n - 1 \).

2 шаг. Строим \(T_i = T_{i-1} \cup e_i \), где \(e_i \) — ребро минимального веса, не входящее в \(T_{i-1} \) и инцидентное ровно одной вершине подграфа \(T_{i-1} \).

Помимо задачи о минимальном остове рассматривается также задача о максимальном остове, которая формулируется и решается аналогично.
6. Разрезы графа. Фундаментальная система циклов и фундаментальная система разрезов.

Разделяющим множеством графа G называется такая его совокупность ребер, удаление которых приводит к увеличению числа компонент связности графа G. В частности для связного графа — это такая совокупность ребер графа G, удаление которых приводит к несвязному графу. Минимальное разделяющее множество (то есть такое, что никакое его собственное подмножество разделяющим уже не является) называется разрезом. Разрез, состоящий из одного ребра, называется мостом.

Например, для графа, изображенного на рис. 11.5:

- $\{e_2, e_5, e_7, e_6\}$ — разделяющее множество, но не разрез;
- $\{e_2, e_3, e_4\}$, $\{e_6, e_7, e_8\}$ — разрезы;
- $\{e_4\}$ — мост;
- $\{e_5, e_7, e_8\}$ не является разделяющим множеством.

Дополнением подграфа H в графе G будем называть граф \overline{H}_G, который имеет те же вершины, что и граф G и все те ребра графа G, которые не принадлежат подграфу H.

Теорема. Пусть T — остов графа G.
1. Всякий разрез графа G имеет общее ребро с T.
2. Всякий цикл графа G имеет общее ребро с дополнением \overline{T}_G остова T в графе G.

Доказательство. 1. Пусть множество ребер R графа G является разрезом графа G. Удаление всех ребер множества R разбивает некоторую компоненту связности K графа G на две части K_1 и K_2. Поскольку T — остов, его часть, покрывающая вершины компоненты K, является деревом, в частности, связным графом и поэтому имеет ребро, соединяющее некоторую вершину K_1 с некоторой вершиной K_2. Это ребро является общим у R и T.
2. Пусть теперь C — некоторый цикл графа G. Предположим, что он не имеет общих ребер с \overline{T}_G. Тогда C целиком содержится в остое T. Но это невозможно, поскольку остов есть лес, то есть граф без циклов. Теорема доказана.

Пусть дан граф G. Зафиксируем некоторый его остов T. Как известно (критерии дерева), если добавить к T некоторое ребро графа G (удаленное при получении остова), то появится ровно один цикл. Множество циклов, полученных таким способом, называется фундаментальной системой циклов, ассоциированной с остовом T. Ясно, что все циклы, полученные таким способом, различны и их количество равно циклическому рангу $\nu(G)$.

Так, например, если G — граф (рис. 11.5) и T — его остов (рис. 11.6), то фундаментальная система циклов G, ассоциированная с остовом T, представлена на рис. 11.7 — 11.10.
Согласно теореме о критериях дерева (пункт d) удаление любого ребра из остова \(T \) разбивает \(T \) на две компоненты связности. Пусть \(V_1 \) – вершины одной компоненты, а \(V_2 \) – другой. Если добавить к такому ребру остова \(T \) другие ребра графа \(G \), соединяющие вершины \(V_1 \) с вершинами \(V_2 \), то получим некоторый разрез графа \(G \). Множество разрезов, полученных таким способом, называется **фундаментальной системой разрезов** графа \(G \), ассоциированной с остовом \(T \). Понятно, что количество разрезов в фундаментальной системе равно числу ребер в остове, которое совпадает с рангом разрезов графа \(G \).

Для рассматриваемого графа \(G \) и его остова \(T \), получаем фундаментальную систему разрезов, приведенную на рис. 11.11.

7. Линейное пространство графа

Пусть \(E(G) \) – множество ребер графа \(G \). Рассмотрим \(\Omega(E(G)) \) – булеан этого множества, с операцией \(\oplus \) – разностная сумма (или сумма по модулю 2) \(A \oplus B = (A \cap \overline{B}) \cup (A \cap \overline{B}) \). Определим также умножение на элементы \(\mathbb{Z}_2 = \{0, 1\} \) следующим образом: \(\forall A \subseteq E(G) \) положим по определению \(0 \cdot A = \emptyset \), \(1 \cdot A = A \).

Нетрудно убедиться, что эти операции удовлетворяют всем аксиомам линейного пространства:

1. \(A \oplus B = B \oplus A \quad \forall A, B \subseteq E(G) \);
2. \((A \oplus B) \oplus C = A \oplus (B \oplus C) \quad \forall A, B, C \subseteq E(G) \);
3. существует нулевой элемент \(\emptyset \): \(A \oplus \emptyset = A \quad \forall A \subseteq E(G) \);
4. для каждого \(A \subseteq E(G) \) существует обратный элемент \(\overline{A} \): \(A \oplus \overline{A} = \emptyset \);
5. \(1 \cdot A = A \quad \forall A \subseteq E(G) \);
6. \(m(nA) = (mn)A \quad \forall m, n \in \mathbb{Z}_2, \ \forall A \subseteq E(G) \);
7. \(m(A \oplus B) = mA \oplus mB \quad \forall m \in \mathbb{Z}_2, \ \forall A, B \subseteq E(G) \);
8. \((m + n)A = mA + nA \quad \forall m, n \in \mathbb{Z}_2, \ \forall A \subseteq E(G) \).

Легко видеть, что базисом этого пространства может служить совокупность одноэлементных подмножеств множества \(E(G) \), т.е. совокупность отдельных ребер, и таким образом, размерность векторного пространства графа \(G \) равна числу ребер этого графа.

Выделим следующие два подпространства этого графа.

а) Подпространство циклов: множество всех циклов графа \(G \), включая и совокупность непересекающихся циклов (как одно целое – один элемент линейного пространства), а также – пустое множество (в качестве нулевого элемента).

б) Подпространство разрезов: множество разделяющих множеств графа \(G \), включая \(\emptyset \).

Нетрудно убедиться, что операции замкнуты на этих множествах и что они действительно являются подпространствами. Заметим также, что фундаментальные системы циклов и разрезов, соответственно, являются базисами этих подпространств.

§ 12. Эйлеровы и гамильтоновы графы

1. Эйлеровы графы

Путь в графе называется эйлеровым, если он содержит все ребра графа.

Замкнутый эйлеров путь называется эйлеровым циклом. Граф, который имеет эйлеров цикл, также называется эйлеровым.

Теорема. (Эйлер). Связный граф является эйлеровым тогда и только тогда, когда степени всех его вершин четные.

Доказательство. Необходимость. Эйлеров цикл, проходя через каждую вершину, выходит из нее столько раз сколько входит. Поэтому число ребер цикла, инцидентное каждой вершине является четным. А так как других ребер в графе, кроме принадлежащих эйлерову циклу, не существует, то степени всех вершин четные.

Достаточность. Пусть степени всех вершин четные. Выбрав произвольную вершину \(v_1 \), начнем строить из нее цикл. Выйдем из \(v_1 \) по любому ребру к следующей вершине \(v_2 \). Поскольку степень \(v_2 \) четна, то существует другое (не пройденное) ребро, по которому можно перейти к следующей вершине \(v_3 \). Поскольку и степень \(v_3 \) четна, то из \(v_3 \) также можно выйти по еще не пройденному ребру и т. д. Будем продолжать этот путь до тех пор, пока это возможно. Заметим, что если вычеркивать пройденные ребра, то степени проходящих вершин уменьшаются на 2 и остаются четными. Поэтому если даже в процессе построения пути мы попадем в вершину, которую уже проходили, найдется не пройденное ребро, по которому можно из этой вершины выйти. Следовательно, данный процесс может закончится только тогда, когда мы вернемся в исходную вершину \(v_1 \) и все ребра, инцидентные \(v_1 \), уже будут пройдены. Таким образом, будет получен цикл.

Обозначим его через \(C_1 \). Если цикл \(C_1 \) содержит все ребра графа, то он является искомым. В противном случае, удалим из графа все ребра цикла \(C_1 \). В полученном подграфе, как и в исходном, степени всех вершин останутся чётными (т. к. либо не изменяется, либо уменьшается на четное число). Удалим также изолированные вершины и обозначим подграф через \(G_1 \). Существуют общие вершины у \(G_1 \) и построенного цикла \(C_1 \) (иначе бы исходный граф не был бы связным). Пусть \(w_1 \) – одна из таких вершин. Начав с \(w_1 \) точно также, как и раньше, построим цикл \(C_2 \) в графе \(G_1 \).
Объединив циклы C_1 и C_2 получим более длинный цикл, чем C_1. Если он содержит все ребра графа, то цель достигнута. В противном случае, снова удалим новый более длинный цикл из исходного графа. В оставшемся подграфе G_2 построим очередной цикл C_3 и т. д. (рис. 12.1). Поскольку число ребер в графе конечное, рано или поздно очередной цикл C_n будет содержать все ребра G_{n-1}. Добавляя C_n к циклу, полученному на предыдущем этапе, получим эйлеров цикл.

Замечание 1. Теорема справедлива также для мульти- и псевдографов.

Замечание 2. Связный граф эйлеров тогда и только тогда, когда существует разбиение множества его ребер $E(G)$ на простые циклы.

Замечание 3. Если в связном графе существует ровно две вершины нечетной степени, то эйлерова цикла не существует, но существует эйлерова цепь, которая начинается в одной вершине нечетной степени, а заканчивается — в другой (доказательство аналогично доказательству теоремы Эйлера). Если число вершин нечетной степени равно $2k$, то нетрудно показать, что граф покрывается (т. е. является объединением) k реберно-непересекающихся цепями.

Оrientированный граф называется эйлеровым, если в нем существует ориентированный эйлеров цикл, т. е. цикл, проходящий по всем дугам с соблюдением ориентации. Легко видеть, что для ориентированных графов, справедлива теорема. Связный ориентированный граф является эйлеровым тогда и только тогда, когда для любой его вершины v полустепень исхода равна полустепени захода: $\text{deg}_+v = \text{deg}_-v$.

2. Гамильтоновы графы

Путь (цикл) в графе называется гамильтоновым, если он содержит каждую вершину графа, причем ровно один раз. Граф называется гамильтоновым, если он имеет гамильтонов цикл.

Гамильтоновый граф имеет связность не меньше 2. Действительно, все его вершины принадлежат гамильтонову циклу, который двусвязен. Однако, двусвязности недостаточно, чтобы граф был гамильтоновым (см. рис. 12.2). Простого критерия для определения, является ли граф гамильтоновым или нет (как, например, для определения эйлеровости графа) не существует. Всё же понятно, что чем больше ребер в графе, чем больше степени вершин графа, тем более вероятно ожидать, что граф является гамильтоновым. В частности, полный граф K_n при $n \geq 3$ очевидно является гамильтоновым. В то же время, существуют гамильтоновы графы и с небольшим числом рёбер, например, циклы C_n, $n \geq 3$.

Известны следующие достаточные (но не необходимые!) условия гамильтоновости.

Теорема (Дирак). Если граф G имеет порядок $n \geq 3$ и для любой вершины v графа G её порядок $\deg v \geq n/2$, то G является гамильтоновым.

Обобщением этого утверждения является

Теорема (Оре). Если для любой пары несмежных вершин u и v графа G порядка $n \geq 3$ сумма их степеней $\deg v + \deg u \geq n$, то G гамильтонов.

Оrientированный граф называется гамильтоновым, если он имеет ориентированный гамильтонов цикл. Орграф называется турниром, если в нём любая пара вершин соединена одной дугой (со стрелкой в одну сторону). Другими словами, турнир – это некоторая ориентация полного графа.

Теорема. Во всяком турнире порядка $n \geq 3$ существует гамильтонов путь.

Задача о коммивояжере

Имеется полный взвешенный граф. Требуется отыскать гамильтонов цикл минимального веса.

К данной формулировке можно свести и задачу отыскания гамильтонового цикла в неполном графе. В этом случае отсутствующим ребрам присваивают вес ∞.

Если нужно найти гамильтонов цикл в обычном (не взвешенном графе), то ребрам присваивают вес 0, а отсутствующим ребрам вес ∞ и ищут гамильтонов цикл веса 0.

Существуют специальные алгоритмы решения данной задачи. Самый примитивный, но чрезвычайно трудоёмкий, из них – полный перебор. Количество вариантов, которые при этом нужно рассмотреть, равно числу циклических перестановок, т. е. $(n-1)!$, где n – порядок графа.

§ 13. Планарные графы

1. **Вложимость графов в трехмерное пространство**

Говорят, что граф вкладывается в данное пространство, если он изоморфен некоторому графу в этом пространстве (все вершины и ребра которого состоят из точек данного пространства), причем кривые, изображающие ребра, не пересекаются.

Теорема. Всякий граф вкладывается в трехмерное евклидово пространство.

Доказательство. Расположим все вершины данного графа на некоторой прямой. Для каждого ребра (дуги) проведем плоскость через прямую, на которой лежат вершины (для различных ребер – различные плоскости) и соединим соответствующие вершины линией, целиком принадлежащей данной плоскости, так чтобы единственныйными общими точками данного ребра и прямой были вершины, инцидентные данному ребру (см. рис. 13.1). Понятно, что при этом ребра не могут пересекаться.

Замечание. Теорема справедлива также для мульти- и псевдографов.
2. Планарные графы. Формула Эйлера

Граф называется **планарным**, если он может быть уложен на плоскости. Непосредственная укладка планарного графа, т.е. его рисунок, на котором ребра не пересекаются, называется **плоским** графом.

Например, трехмерный куб является планарным графом (см. рис. 13.2), полный граф \(K_4 \) также планарный (рис. 13.3).

Ребра плоского графа, образующие простые циклы, разбивают плоскость на несколько частей, которые называются **гранями** плоского графа. Так, граф куба (см. рис. 13.2) имеет 6 граней (5 внутренних и одну внешнюю), граф \(K_4 \) (см. рис. 13.3) имеет 4 грани (3 внутренних и 1 внешнюю). Внешнюю грань имеет всякий планарный граф, даже если в нем нет циклов.

Плоский граф вместе со всеми своими вершинами, ребрами, а также гранями называют **плоской картой**.

Теорема. Для всякого связного плоского \((n, m)\)-графа с \(f \) гранями справедливо равенство (формула Эйлера):
\[
 n - m + f = 2.
\]

Доказательство. Пусть \(T \) — остов графа \(G \). \(T \) имеет только одну (внешнюю) грань и \(n-1 \) ребро, т.e. в этом случае: \(f = 1 \), \(m = n - 1 \) и очевидно формула справедлива. Будем поочередно добавлять к остову \(T \) недостающие ребра графа \(G \). При этом число вершин \(n \) не меняется, число ребер \(m \) увеличивается на 1. Число граней \(f \) также увеличивается на 1. Действительно, если добавленное ребро соединяет две вершины, принадлежащие какому-либо циклу, то грань, ограниченная данным циклом, разбивается на две граней. В противном случае, новая внутренняя грань появляется за счет части внешней граней. В любом случае число граней увеличивается на 1. Таким образом, после добавления каждого ребра формула остается верной. Значит, когда будут восстановлены все ребра и получен граф \(G \), формула также окажется верной.

3. Следствия из формулы Эйлера

1. Число граней любой плоской укладки планарного \((n, m)\)-графа \(G \) постоянно и равно \(m - n + 2 \).

 Отметим также, что число граней \(f = \nu(G) + 1 \), где \(\nu(G) \) — циклический ранг графа \(G \).

2. Пусть выпуклый многогранник имеет в вершин, \(P \) ребер и \(\Gamma \) граней. Тогда \(B - P + \Gamma = 2 \).

Доказательство. Поместим многогранник внутрь сферы. Выберем некоторую внутреннюю точку \(O \) многогранника и проведем через нее все возможные лучи,
отображая точки поверхности многогранника в точки сферы (см. рис. 13.4). Получим укладку поверхности многогранника на сфере, представляющую собой некоторый график на сфере. Выберем некоторую внутреннюю точку N одной из граней графа на сфере и проведем через диаметрально противоположную точку S касательную плоскость α к сфере. Проведя через N всевозможные лучи, отобразим сферу на плоскость (точка N перейдет в бесконечно удаленную точку плоскости). При этом график со сферы отобразится в некоторый плоский график на плоскости α. Заметим, что при этом грань, содержащая точку N отобразится во внешнюю грань графа на плоскости α. (рис. 13.5). Композиция обоих отображений, очевидно, определяет биекцию между множествами вершин, ребер, граней данного многогранника и такими же множествами полученного плоского графа. Поэтому полученный график имеет B вершин, P ребер и G граней. Остается воспользоваться формулой Эйлера для графов.

3. Для всякого планарного (n, m)-графа порядка $n \geq 3$ $m \leq 3n - 6$.

Доказательство. Пусть G – плоский связный (n, m)-граф с f гранями. Всякая грань ограничена не менее, чем 3 ребрами. Всякое ребро либо разграничивает 2 грани, либо ни одной (если не принадлежит ни одному циклу). Поэтому $3f \leq 2m$. По формуле Эйлера $f = m - n + 2$. Поэтому $3(m - n + 2) \leq 2m$, откуда и получаем нужное неравенство.

4. Граф K_5 не является планарным.

Доказательство. Действительно порядок n полного графа K_5 равен 5, а число его ребер $m=10$. Если бы этот граф был планарным, то для него выполнялось бы следствие 3, т.е. $10 \leq 3\cdot5-6 \Leftrightarrow 10 \leq 9$, которое не верно. Следовательно, K_5 – не планарный.

5. Граф $K_{3,3}$ не является планарным.

Доказательство. Данный граф имеет $n=6$ вершин и $m=9$ ребер. Предположим, что он планарный. Тогда он имеет $f = m - n + 2 = 9 - 6 + 2 = 5$ граней. В то же время, всякая грань двудольного графа ограничена четным числом ребер (все циклы имеют четную длину), т.е. не менее, чем четырьмя ребрами. Поэтому $4f \leq 2m$. Но для $K_{3,3}$ это неравенство приводит к $4\cdot5 \leq 2\cdot9$, что не верно. Значит, предположение о планарности графа $K_{3,3}$ ошибочно.
6. В любом простом планарном графе существует вершина степени не более 5.

Доказательство. Без потери общности можно считать, что данный граф G — связный планарный (n, m)-граф порядка $n \geq 3$. Тогда согласно следствию 3 имеем: $m \leq 3n - 6$. Предположим противное, что степени всех вершин графа G не менее 6. Тогда по лемме о рукопожатиях $6n \leq 2m$, т. е. $m \geq 3n$, что противоречит неравенству в следствии 3. Утверждение доказано.

4. Гомеоморфные графы. Критерий планарности

Рассмотрим две новые операции на графах.

Подразбиением ребра $\{u, v\}$ графа G называется операция удаления ребра $\{u, v\}$ с добавлением новой вершины w и двух ребер $\{u, w\}$ и $\{w, v\}$. На рисунке графа G это означает, что добавляется новая вершина w на ребре $\{u, v\}$, которое, таким образом, разбивается на два ребра (рис. 13.6).

Стягивание смежных вершин u и v графа G означает удаление ребра $\{u, v\}$ и замена двух вершин u и v одной вершиной, которая соединяется ребрами со всеми вершинами графа G, с которыми были смежны вершины u и v (рис. 13.7).

Графы G и H называются гомеоморфными, если они могут быть получены друг из друга с помощью операций подразбиения ребер и стягивания вершин степени 2 (см. рис. 13.8).

Гомеоморфными являются, в частности, любые две простые цепи, любые два простых цикла.

Теорема (Понтрягин – Куратовский). Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

Теорема (Вагнер). Граф планарен тогда и только тогда, когда в нем нет подграфов, стягиваемых к графикам K_5 или $K_{3,3}$.
Отметим в заключение, что стягивая любое ребро планарного графа, вновь получим планарный граф. Если же дан непланарный граф, то стянув одно или несколько ребер можно получить планарный граф.

§ 14. Раскраски графов

1. Хроматическое число графа

Раскраска вершин графа G называется правильной, если любые две смежные вершины окрашены в разные цвета. Правильная раскраска графа G, при которой использовано k различных цветов, называется k-раскраской, а граф G, для которого существует k-раскраска, называется k-раскрашиваемым. Наименьшее значение k, для которого существует правильная k-раскраска графа G, называется хроматическим числом графа G и обозначается $\chi(G)$.

Так, например, для простой цепи P_n хроматическое число равно 2. Хроматическое число простого цикла C_n в случае четного n также равно 2, а для нечетных n – равно 3. В полном графе K_n, очевидно, окраска вершин будет правильной только в случае, если все вершины раскрашены в разные цвета. Поэтому $\chi(K_n) = n$.

К поиску правильной окраски графа и его хроматического числа сводится решение многих классических задач.

Задача о раскраске географической карты

Дана географическая карта, на которой изображены страны, разделяемые границами. Требуется раскрасить карту так, чтобы страны, имеющие общие участки границы, были окрашены в разные цвета, и чтобы при этом было использовано минимальное количество цветов.

По данной карте построим граф следующим образом. Поставим в соответствие странам карты вершины графа. Если какие-то две страны имеют общий участок границы, то соответствующие им вершины соединим ребром, в противном случае – нет.

Легко видеть, что раскраске карты соответствует правильная раскраска вершин полученного графа, а минимальное количество необходимых красок равно хроматическому числу этого графа.

Задача о распределении оборудования

Пусть $V = \{v_1, v_2, \ldots, v_n\}$ – множество работ, которые необходимо выполнить. Предположим, что для выполнения каждой работы требуется одинаковое время t и некоторые механизмы из множества механизмов $M = \{m_1, m_2, \ldots, m_k\}$. Никакие механизмы не могут быть использованы одновременно для выполнения двух и более работ.

Требуется распределить механизмы так, чтобы выполнить все работы и чтобы затраченное на это время T было минимальным.

Построим граф, соответствующий данной задаче, выбрав в качестве множества вершин V – множество работ. Если какие-то две работы требуют для их выполнения один и тот же механизм или механизмы, то соответствующие им вершины, соединим ребром, в противном случае – нет. Найдем какую-нибудь правильную раскраску полученного графа G. Тогда видно, что работы "закрашенные в один и тот же цвет" могут выполняться одновременно. Значит минимальное время выполнения всех работ $T = t\chi(G)$.

Аналогичным образом формулируется и интерпретируется задача о составлении расписания занятий (в школе, ВУЗе и т. д.).

55
2. Хроматическое число 2-дольного графа. Критерий 2-дольности

Утверждение. Пусть G — некоторый непустой граф. Тогда $\chi(G) = 2$ в том и только том случае, когда G — 2-дольный граф.

Доказательство. Необходимость. Пусть $\chi(G) = 2$. Обозначим через V_1 все вершины графа G, раскрашенные в один цвет, а через V_2 — в другой. Поскольку между вершинами, имеющими одинаковый цвет, нет ребер, то граф G — 2-дольный с долями V_1 и V_2.

Достаточность. Пусть G — 2-дольный граф. Окрасим вершины одной доли в один цвет, а другой доли — в другой цвет. Очевидно, полученная раскраска правильная и, значит, $\chi(G) = 2$.

Теорема. (критерий 2-дольности). Граф двудольный тогда и только тогда, когда он не имеет циклов нечетной длины.

Доказательство. Необходимость. Пусть G — двудольный граф. Рассмотрим какой-нибудь цикл (если он существует, иначе доказывать нечего). Поскольку ребра соединяют только вершины из разных долей графа, то двигаясь по циклу мы будем поочередно переходить из одной доли в другую, пока, наконец, не вернемся в исходную вершину (и исходную долю). Поэтому цикл имеет четную длину.

Достаточность. Пусть все циклы в графе G имеют четную длину. Без потери общности можно считать, что G — связный. И пусть \mathcal{G} — некоторая вершина графа G. Обозначим, через V_1 — множество вершин графа G, расстояние от которых до вершины \mathcal{G} является четными (в частности $\mathcal{G} \in V_1$), а через V_2 — остальные вершины графа. Достаточно показать, что если вершины $u, \omega \in V_1$ (или V_2), то они не являются смежными. Предположим противное, что существует ребро $\{u, \omega\}$. Рассмотрим кратчайшие цепи $S(u, \mathcal{G})$ и $S(\omega, \mathcal{G})$ между соответствующими парами вершин. Обе они имеют четную длину (нечетную, если $u, \omega \in V_2$). Тогда, объединяя эти цепи и добавляя ребро $\{u, \omega\}$, получим цикл нечетной длины. Возможно, цепи $S(u, \mathcal{G})$ и $S(\omega, \mathcal{G})$ имеют общие ребра (см. рис. 14.1). Тогда цикл получится, если удалить их из описанного объединения. Очевидно, длина его остается нечетной. Полученное противоречие завершает доказательство.

3. Некоторые оценки хроматического числа

Уже отмечалось, что $\chi(K_n) = n$. Поэтому если граф G содержит полный подграф порядка r, то $\chi(G) \geq r$. В целом, чем меньше ребер в графе и чем меньше степени его вершин, тем меньше хроматическое число.

Теорема. Пусть r — минимальная степень вершин графа G, тогда существует правильная $(r+1)$–раскраска графа G.

Доказательство. Индукция по числу вершин n графа G.

База индукции: $n = 2$ — утверждение очевидно.

Индукционный переход. Предположим, что существует правильная $(r+1)$–раскраска для всех графов порядка n, у которых степени вершин не превосходят r. Рассмотрим граф порядка $n+1$ с максимальной степенью вершин, равной r. Удалим произвольную вершину \mathcal{G}. Для полученного графа порядка n существует согласно индукционному предположению правильная $(r+1)$ – раскраска. Воспользуемся такой
раскраской. Удаленная вершина \(\mathcal{O} \) имеет не более \(r \) смежных, для окраски которых использовано не более \(r \) цветов. Окрасим вершину \(\mathcal{O} \) в цвет, отличный от цвета смежных вершин (так как цветов больше, чем \(r \), то такой цвет найдется). Получим правильную \((r+1)\)-раскраску исходного графа.

Теорема (Брукс). Пусть \(G \) – связный граф, не являющийся полным, и степени всех вершин которого не превосходят \(r \), где \(r \geq 3 \). Тогда \(\chi(G) \leq r \).

Замечание. Оценка хроматического числа в теореме Брукса достижима (см. рис. 14.2) и, значит, не может быть в общем случае (без дополнительных предположений) улучшена. Однако, оценка весьма грубая. При выполнении условий теоремы хроматическое число может быть значительно меньше максимальной степени вершин. Например, звездный граф \(K_{1,n} \), и с максимальной степенью вершин \(n \) имеет хроматическое число 2. Для колеса \(W_{2n} \) по теореме Брукса \(\chi(W_{2n}) \leq 2n \). В действительности \(\chi(W_{2n}) = 3 \).

4. **Раскраски планарных графов**

Теорема. Для любого планарного графа существует правильная 6-раскраска.

Доказательство. Индукция по числу вершин \(n \).

База индукции: \(n \leq 7 \) – утверждение очевидно.

Индукционный переход. Предположим, что правильная 6-раскраска существует для всякого планарного графа порядка \(n \). Рассмотрим планарный граф порядка \(n+1 \). Согласно следствию 6 из формулы Эйлера в нем существует вершина \(v \) степени \(\deg v \leq 5 \). Удалим эту вершину. И воспользуемся 6-раскраской полученного графа, которая существует в силу индукционного предположения. Раскрасив удаленную вершину \(v \) в цвет, отличный от цветов смежных с ней вершин, получим правильную раскраску исходного графа.

Замечание. С помощью более тщательных и тонких рассуждений можно доказать, что всякий планарный граф 5-раскрашиваемый. Кроме того, еще в прошлом веке была высказана гипотеза 4-х красок. Сравнительно недавно было получено положительное решение этой гипотезы с использованием ЭВМ. Пример полного графа \(K_4 \), который является планарным, показывает, что эту величину (4 краски) в общем случае уменьшить нельзя. Однако, известно, что если в плоском графе нет циклов длины 3, то граф 3 – раскрашиваемый (теорема Греча), а если нет циклов нечетной длины, то достаточно 2-х красок (следует из критерия двудольности графа).

5. **Реберная раскраска графа**

Помимо раскраски вершин рассматриваются также раскраски ребер графов.

Граф \(G \) называется реберно \(k \)-раскрашиваемым, если его ребра можно раскрасить \(k \) красками так, что никакие смежные ребра не будут иметь один и тот же цвет. Наименьшее такое число \(k \) называется реберно-хроматическим числом графа \(G \) и обозначается \(\chi_e(G) \).

Теорема (Визин). Пусть \(G \) – мультиграф, максимальная степень вершин которого равна \(r \). Тогда \(r \leq \chi_e(G) \leq r+1 \).
§ 15. Паросочетания

1. Паросочетания

Паросочетанием графа G называется любое множество попарно несмежных ребер. Паросочетание графа называется **максимальным**, если оно не содержится в паросочетании с большим числом ребер. Паросочетание называется **наибольшим**, если оно имеет наибольшее число ребер среди всех паросочетаний данного графа. Паросочетание называется **совершенным**, если оно покрывает все вершины графа, т. е. если каждая вершина графа G инцидентна некоторому ребру данного паросочетания.

Например, для графа на рис. 15.1:

- $\{e_1, e_2, e_6\}$ – не является паросочетанием;
- $\{e_1, e_6, e_9\}$ – паросочетание, но не максимальное;
- $\{e_1, e_5, e_7\}, \{e_2, e_6, e_9\}$ – максимальные паросочетания, но не наибольшие;
- $\{e_1, e_4, e_6, e_9\}$ – наибольшее паросочетание, которое одновременно является совершенным.

Совершенное паросочетание существует не для всякого графа. Чаще всего паросочетания рассматриваются в двудольных графах. В двудольном графе G с долями V_1 и V_2 совершенным паросочетанием V_1 на V_2 называется паросочетание, которое покрывает все вершины доли V_1.

К поиску соответствующих паросочетаний сводится решение некоторых классических задач.

Задача о свадьбах

Пусть $V = \{\vartheta_1, \vartheta_2, \ldots, \vartheta_n\}$ – множество юношей, каждый из которых знаком с некоторыми девушками из множества $U = \{u_1, u_2, \ldots, u_m\}$. Требуется женить наибольшее число юношей так, чтобы каждый из них женился на знакомой ему девушке.

Данная задача сводится к нахождению наибольшего паросочетания в двудольном графе G с долями V и U, в котором смежными являются вершины v_i и u_j, если соответствующие юноша и девушка знакомы, и не смежны – в противном случае. Возможность женить всех юношей означает существование в графе совершенного паросочетания V на U.

Задача о назначениях

Имеется множество исполнителей $V = \{\vartheta_1, \vartheta_2, \ldots, \vartheta_n\}$, каждый из которых может выполнять некоторые из работ множества $X = \{x_1, x_2, \ldots, x_m\}$. Стоимость выполнения работы x_i исполнителем ϑ_j равна p_{ij}. Необходимо распределить исполнителей по работам так, чтобы выполнить все работы с минимальными затратами.

Ясно, что этой задаче так же отвечает соответствующий взвешенный двудольный граф. При этом возможность выполнить все работы означает существование совершенного паросочетания X на V. Для того, чтобы минимизировать затраты, необходимо искать совершенное паросочетание наименьшего веса.
2. Теорема Холла о свадьбах

Пусть \(A \) — подмножество множества вершин \(V(G) \) графа \(G \). Множество всех вершин графа \(G \), каждая из которых смежна с некоторой вершиной из \(A \), называется \textit{окружением} множества \(A \) и обозначается \(N_A \).

\textbf{Теорема.} В двудольном графе \(G \) с долями \(V \) и \(U \) существует совершенное паросочетание \(V \) на \(U \) тогда и только тогда, когда для любого \(A \subseteq V \) мощность \(|N_A| \geq |A| \).

\textbf{Доказательство.} Действительно, если для какого-то \(A \subseteq V \) условие \(|N_A| \geq |A| \) не выполняется, т. е. (пользуясь терминологией задачи о свадьбах) какое-то множество юношей (предположим \(k \) человек) знакомы в совокупности меньше, чем с \(k \) девушками, то уже этих \(k \) юношей нельзя всех женить, тем более — всех юношей множества \(V \). Таким образом необходимость данного условия очевидна.

Докажем достаточность. Пусть \(\forall \ A \subseteq V \) условие \(|N_A| \geq |A| \) выполняется.

Возможны два случая.

а) Любые \(k \) юношей знакомы в совокупности не менее, чем с \(k+1 \) девушкой. Тогда, рассуждая по индукции по числу юношей (база индукции очевидно имеется) женим произвольного юношу на знакомой ему девушке. Для остальных юношей, количество знакомых девушек уменьшается не более, чем на 1. Значит, для любого числа \(k \) любые \(k \) юношей будут знакомы не менее, чем с \(k \) девушками. По индукционному предположению их можно женить.

б) Существует \(k \) юношей, у которых ровно \(k \) знакомых девушек (\(k < n = |A| \)). По предположению индукции их можно женить. Остается \(n-k \) юношей. Для них по-прежнему будет выполняться условие, что любые \(l \) из них знакомы не менее, чем с \(l \) девушками. Действительно, если бы это было не так, то соответствующие \(l \) юношей вместе с предыдущими \(k \) имели бы в совокупности не менее \(l+k \) знакомых девушек, что противоречит условию теоремы. Значит, и оставшихся \(n-k \) юношей можно женить по индукционному предположению.

§ 16. Сети

1. Основные понятия

\textbf{Сеть} (в самом общем смысле) называется всякий граф, в котором специально выделены некоторые вершины, называемые \textit{полюсами}. Например, корневое дерево можно рассматривать как однополюсную сеть (полюс – корень).

В данном параграфе под сетью мы будем понимать взвешенный ориентированный граф.

Примерами таких сетей являются схемы улиц, нефте-, газо- и трубопроводов, линий электропередач (в качестве веса может выступать пропускная способность); схемы выполнения комплекса работ при подготовке какого-либо мероприятия, проекта, строительства дома, завода и т. д. (вес — время выполнения работ или их стоимость, в зависимости от решаемой задачи).

Для сетей полустепень исхода \(\operatorname{deg}_+ v \) вершины \(v \) определяется как сумма весов всех дуг, для которых \(v \) является началом, а полустепень захода \(\operatorname{deg}_- v \) — сумма весов всех дуг, для которых \(v \) является концом.
Как и для обычных орграфов, для сетей справедлива

Лемма (о "рукопожатиях"). Сумма полустепеней исхода всех вершин сети равна сумме полустепеней захода.

В сети вершины, которые являются только началом дуг, называются источниками, а вершины, которые являются только концами дуг – стоками (это полюса сети).

Обычно рассматриваются сети без ориентированных циклов. В этом случае они представляют собой совокупность путей, ведущих от источников к стокам. Кроме того, можно считать, что в сети существует один источник и один сток. В противном случае, если сеть имеет несколько источников \(v_1, v_2, ..., v_s \) и несколько стоков \(w_1, w_2, ..., w_t \), то сеть можно преобразовать, объединив все источники и объединив все стоки, или ввести фиктивный (общий) источник \(v_0 \) и сток \(w_0 \), как показано на рис. 16.1.

![Рис. 16.1](image)

Сеть с одним источником \(v_0 \) и одним стоком \(w_0 \) называют \((v_0, w_0)\)-сетью.

2. **Потоки в сетях**

Для данной сети \((G, p)\) потоком называется функция \(\varphi(e) \), ставящая в соответствие каждой дуге \(e \) некоторое неотрицательное число, такое что:

1) \(0 \leq \varphi(e) \leq p(e) \) (т.е. поток неотрицателен и не превосходит пропускной способности данной дуги);

2) для всякой вершины \(u \), кроме источника и стока \(\sum_{\{e_k\} \subseteq \{e_n\}} \varphi(e_k) = \sum_{\{e_n\}} \varphi(e_n) \), где первая сумма вычисляется по всем дугам \(e_k \), для которых вершина \(u \) является концом, а вторая сумма по всем ребрам \(e_n \), для которых \(u \) является началом (т. е. общий поток, втекающий в данную вершину, равен суммарному потоку, вытекающему из этой вершины).

Дуги, для которых поток равен пропускной способности: \(\varphi(e) = p(e) \), называются насыщенными; в противном случае, если \(\varphi(e) < p(e) \) – ненасыщенными.

Из леммы о "рукопожатиях" и условия 2) следует, что суммарный поток, вытекающий из источника \(v_0 \), равен суммарному потоку, втекающему в сток \(w_0 \). Эта величина называется величиной потока \((v_0, w_0)\)-сети.

Две \((v_0, w_0)\) цепи графа \(G \) называют реберно-непересекающимися, если у них нет общих ребер.
Две \((v_0, w_0)\) цепи графа \(G\) называют вершинно-непересекающимися, если у них нет обших вершин, за исключением \(v_0, w_0\).

Основная задача, которая ставится для вышеописанных сетей, состоит в отыскании максимального потока данной сети, т. е. потока, величина которого наибольшая при условиях \(1) - 2).\)

Решение этой задачи связано предварительно с ответом на несколько более простых вопросов, касающихся связанного (неориентированного) мультиграфа \(G\) и фиксированной пары его вершин \(v_0\) и \(w_0\):

1. Сколько существует реберно-непересекающихся простых \((v_0, w_0)\)-цепей в графе \(G)\?
2. Сколько существует вершинно-непересекающихся простых \((v_0, w_0)\)-цепей в графе \(G)\?

Для того, чтобы сформулировать ответы на эти вопросы, введем следующие определения.

Множество \(A \subseteq E(G)\) называется \((v_0, w_0)\)-разделяющим, если всякая простая \((v_0, w_0)\)-цепь содержит ребро из множества \(A)\).

Множество \(B \subseteq V(G)\) называется \((v_0, w_0)\)-отделяющим, если всякая простая \((v_0, w_0)\)-цепь содержит вершину из \(B)\).

Теорема 1 (Менгер). Максимальное число реберно-непересекающихся простых \((v_0, w_0)\)-цепей в графе \(G)\) равно минимальному числу ребер в \((v_0, w_0)\)-разделяющем множестве графа \(G)\).

Теорема 2 (Менгер). Максимальное число вершинно-непересекающихся \((v_0, w_0)\)-цепей в графе \(G)\) равно минимальному числу вершин в \((v_0, w_0)\)-отделяющем множестве графа \(G)\).

Теорема 3 (о целочисленности). Максимальное число непересекающихся по дугам простых \((v_0, w_0)\)-цепей в \((v_0, w_0)\)-сети равно минимальному числу дуг в \((v_0, w_0)\)-разделяющем множестве цепи.

Теорема 4 (Форд - Фалкерсон). Величина максимального потока в \((v_0, w_0)\)-сети равна минимальной пропускной способности \((v_0, w_0)\)-разреза сети. (Пропускная способность разреза подсчитывается как сумма пропускных способностей всех ребер, составляющих данный разрез).

Схема доказательства. Если пропускные способности \(p(e)\) всех дуг выражаются целыми положительными числами, то рассечем каждую дугу \(e\) на \(p(e)\) параллельных дуг с пропускной способностью 1. И тогда утверждение теоремы следует из теоремы о целочисленности.

Если пропускные способности \(p(e)\in \mathbb{Q}\) для всех ребер \(e\) сети, то умножив их все на общий знаменатель, придем к предыдущему случаю.

Если \(p(e)\) не являются рациональными, то воспользуемся аппроксимацией действительных чисел рациональными, т. е. заменим \(p(e)\) последовательностями \(a_n(e)\) рациональных чисел, такими, что \(\lim a_n(e) = p(e)\) при \(n \to \infty\). Для каждого \(n\) и сети с пропускными способностями \(a_n\) имеем предыдущий случай, при котором утверждение теоремы верно. Переходя к пределу при \(n \to \infty\), получим, что теорема справедлива в общем случае.
3. Сетевое планирование

Предположим, что для осуществления некоторого проекта необходимо выполнить определенный комплекс работ. Построим сетевой графik этих работ. Вершины сети (события) будем отождествлять с их номерами, обозначив номером 0 источник (начало работ). Завершающему событию, т. е. окончанию всех работ, которое является стоком сети, присвоим наибольший номер n, в то время, как остальные промежуточные события пронумеруем от 0 до n-1, принимая, насколько это возможно, во внимание очередность их наступления. Если некоторое событие j может наступить только после события i и при этом должна быть выполнена определенная работа, то построим дугу (i, j), присвоив ей вес t_{ij} — время выполнения соответствующей работы. Если событие j не может наступить раньше события i, но для этого не требуется выполнение специальной работы, то также построим дугу (i, j) и присвоим ей вес 0.

По сетевому графику определим время, необходимое на выполнение всего проекта. Рассмотрим всевозможные (0, n)-пути от начала работ до их окончания. Для каждого пути подсчитаем его длину (время выполнения всех работ данного пути).

Простой (0, n)-путь, имеющий наибольшую длину, называется критическим путем сети.

Понятно, что время, необходимое на выполнение всех работ проекта, не может быть меньше длины (времени) критического пути. Верно и обратное, что этого времени достаточно для выполнения проекта. Таким образом, справедлива

Теорема. Время, необходимое для выполнения всех работ проекта, равно длине критического пути соответствующей сети.

Работы, лежащие на критическом пути, также называются критическими. Сокращение или увеличение сроков выполнения критических работ соответственно сокращает или увеличивает общую продолжительность выполнения проекта. Остальные работы называются некритическими и допускают некоторое запаздывание в их выполнении, которое не задерживает сроков реализации всего проекта.

Алгоритм поиска критического пути

Пусть дана сеть (рис. 16.2). Для каждого события i определим наиболее ранний срок его наступления t_p(i) по следующему правилу:
1) t_p(0)=0;
2) для i > 0 t_p(i) равно продолжительности самого длинного (0, i)-пути.

Значения t_p(i) определяют последовательно, переходя от источника к стоку. Так, для рассматриваемого примера (рис. 16.2) находим:

\[t_p(0) = 0, \quad t_p(1) = 1, \quad t_p(2) = 5, \quad t_p(3) = 11, \quad t_p(4) = 11, \quad t_p(5) = 16. \]

Эти значения находятся из соотношения: \(t_p(i) = \max \{ t_p(k) + t_{ki}, \} \), т. е. для всех дуг (k, i), для которых i является концом, необходимо вычислить \(t_p(k) + t_{ki} \) и выбрать наибольшее значение.

Итак, в нашем примере время выполнения проекта равно 16. Чтобы получить критический путь, будем передвигаться в обратном
направлении, от стока к источнику, по тем ребрам \((k, i)\), которые определяли значения \(t_p(i)\), т.е. для которых выполняется равенство

\[t_p(i) - t_{ki} = t_p(k). \]

В примере это ребра: \((3, 5); (2, 3); (2,1)\). Таким образом, \((1, 2, 3, 5)\) – критический путь.

Резервы времени

Некритические работы допускают некоторое запаздывание в их выполнении.

Резервом времени события \(i\) называется время \(\tau(i)\), на которое можно отложить наступление события \(i\) так, что это не увеличит времени выполнения всего проекта.

Поздним временем наступления события \(i\), называется время \(t_p(i) = t_p(i) + \tau(i)\).

Поздние сроки наступления событий определяются последовательно, передвигаясь от стока к источнику. Сразу отметим, что для стока \(n t_p(n) = t_p(n)\), как и для всех других событий на критическом пути, которые не имеют резерва времени.

Если для всех событий \(m\), непосредственно следующих за событием \(i\) (т.е. таких, для которых существуют дуги \((i, m)\)), \(t_a(m)\) уже вычислены, то находим

\[t_a(i) = \min\{ t_a(m) - t_{ma} \}. \]

При подсчете ранних и поздних сроков наступления событий результаты удобно записывать в вершинах (см. рис. 16.3). Поэтому каждую вершину будем изображать в виде круга, разбитого на три сектора. В нижнем секторе записывается номер события, в левом – раннее время наступления, в правом – позднее.

На рисунке проставлены найденные ранее \(t_p(i)\), а также \(t_a(i)\) для событий, находящихся на критическом пути. Далее находим:

\[t_a(4) = 16 - 3 = 13; \quad t_a(1) = \min\{11 - 2, 5 - 3\} = 2. \]

Таким образом, событие 1 имеет резерв времени \(\tau(1) = 2 - 1 = 1\), а событие 4 – резерв времени \(\tau(4) = 13 - 11 = 2\).
ТИПОВОЙ РАСЧЕТ «ГРАФЫ»

Задание

Граф G задан матрицей смежности.
1. Построить рисунок графа G.
2. Записать степенную последовательность графа G. Является ли график G регулярным?
3. Является ли график G связным? Чему равна его вершинная и реберная связность?
4. Осуществить поиск в ширину, начав с вершины 2.
5. Найти удаленности всех вершин.
6. Найти радиус и диаметр графа G; указать центры и периферийные центры.
7. Осуществить поиск в глубину, начав с вершины 3. Записать соответствующий обход и построить дерево путей.
8. Найти циклический ранг и ранг разрезов графа G.
9. Построить остав T графа G с максимально возможным числом концевых вершин.
10. Изобразить остав T как корневое дерево, выбрав в качестве корня центр T. Записать код полученного корневого дерева.
11. Построить фундаментальную систему циклов графа G, ассоциированную с оставом T. Какова мощность пространства циклов графа G?
12. Построить фундаментальную систему разрезов графа G, ассоциированную с оставом T. Какова мощность пространства разрезов графа G?
15. Является ли график G гамильтоновым? Если является, то укажите гамильтонов цикл. Если нет, то определите, содержит ли G гамильтонову цепь (укажите ее).
16. Является ли график G планарным? Если является, то постройте изоморфный плоский граф. Сколько граней он содержит?
17. Найдите хроматическое и реберно-хроматическое число графа G. Приведите соответствующие раскраски.
18. Найдите наибольшее паросочетание графа G. Является ли оно совершенным?

Варианты индивидуальных заданий

1) $\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

2) $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
<table>
<thead>
<tr>
<th>3)</th>
<th>4)</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
| \[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
<p>|</p>
<table>
<thead>
<tr>
<th>5)</th>
<th>6)</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
| \[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
<p>|</p>
<table>
<thead>
<tr>
<th>7)</th>
<th>8)</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
| \[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
<p>|</p>
<table>
<thead>
<tr>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix 9</td>
<td>Matrix 10</td>
<td>Matrix 11</td>
<td>Matrix 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21)</td>
<td></td>
<td>22)</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27)</td>
<td>28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 1 0 0 1 1 1</td>
<td>0 0 1 0 1 1 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 0 1 1 0 1 0</td>
<td>0 0 1 0 1 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 1 0 0 0 0 0 0</td>
<td>1 1 0 0 0 1 0 1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 0 1 0 1 0 1 1</td>
<td>0 0 0 0 1 0 0 0 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 1 0 0 1 0 1 0</td>
<td>1 1 0 1 0 0 1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 0 0 0 0 1 0</td>
<td>1 1 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 1 0 0 1 0 1 0</td>
<td>0 1 1 0 0 0 0 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 1 0 1 0 0 0</td>
<td>0 0 0 0 1 0 1 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 0 0 0</td>
<td>0 0 1 1 1 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 1 0 1 0 0 0</td>
<td>1 0 0 0 1 0 1 0 1 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>29)</th>
<th>30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 1 0 0 0 0</td>
<td>0 0 1 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>0 0 1 0 0 0 0 1 0 0</td>
<td>0 0 1 0 0 1 0 1 1 0</td>
</tr>
<tr>
<td>1 1 0 0 0 1 1 0 0 0</td>
<td>1 1 0 0 0 0 1 0 1 0</td>
</tr>
<tr>
<td>1 0 0 0 1 1 1 0 1 1</td>
<td>0 0 0 0 1 1 1 0 1 0</td>
</tr>
<tr>
<td>1 0 0 1 0 0 0 0 1 1</td>
<td>0 0 0 1 0 0 0 1 1 1</td>
</tr>
<tr>
<td>1 0 1 1 0 0 0 1 0 0</td>
<td>0 1 0 1 0 0 0 0 1 1</td>
</tr>
<tr>
<td>0 0 1 1 0 0 0 0 0 0</td>
<td>0 0 0 1 0 0 0 1 0 0</td>
</tr>
<tr>
<td>0 1 0 0 0 1 0 0 1 1</td>
<td>0 1 1 0 1 1 0 0 0 1</td>
</tr>
<tr>
<td>0 0 0 1 1 0 0 1 0 1</td>
<td>0 1 0 1 1 1 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 1 1 0 0 1 1 0</td>
<td>1 0 1 0 1 0 0 1 0 0</td>
</tr>
</tbody>
</table>
ЛИТЕРАТУРА