

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

(51) Int. Cl. *C23C 12/02* (2006.01)

2017.09.29

(21) Номер заявки

201501093

(22) Дата подачи заявки

2015.10.21

СМЕСЬ ДЛЯ НАСЫЩЕНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ ИЗ КОРРОЗИОННО-СТОЙКИХ СТАЛЕЙ УГЛЕРОДОМ И ХРОМОМ

(43) 2017.04.28

(96) 2015/EA/0130 (BY) 2015.10.21

(71)(73) Заявитель и патентовладелец:

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (BY)

(72) Изобретатель:

Стефанович Василий Александрович, Борисов Станислав Витальевич, Стефанович Александр Васильевич (BY)

(56) SU-A1-956615 SU-A1-1559001 RU-C2-2285741 US-B1-6503340 US-A-4158578

Изобретение относится к области металлургии, а именно к химико-термической обработке, и может (57) быть использовано для изготовления диффузионно-упрочненных стальных деталей, имеющих повышенную долговечность при эксплуатации в условиях изнашивания. Задачей, решаемой изобретением, является увеличение толщины зоны карбидных включений в цементованном слое, диффузионном насыщении коррозионно-стойких сталей, что позволит увеличить срок эксплуатации деталей. Поставленная задача решается тем, что в смесь для насыщения стальных деталей из коррозионно-стойких сталей углеродом и хромом, содержащую хром, бондюжский карбюризатор, дополнительно вводят хлорид олова и гидрокарбонат натрия при следующем соотношении компонентов, мас. %: хром - 30-35; бондюжский карбюризатор - 50-55; хлорид олова 2-4; гидрокарбонат натрия - 10-15.

Изобретение относится к области металлургии, а именно к химико-термической обработке (XTO), и может быть использовано для изготовления диффузионно-упрочненных стальных деталей, имеющих повышенную долговечность при эксплуатации в условиях изнашивания.

Известна смесь для насыщения стальных изделия [1], содержащая следующие компоненты, мас.%: кокс - 85, сода - 15.

При XTO в данном составе на коррозионно-стойких сталях образуются диффузионные слои неравномерной толщины без поверхностной карбидной зоны, имеющие темный слой на поверхности, который легко удаляется соскабливанием.

Известна среда для корбохромирования стальных деталей [2], принятая за прототип, содержащая следующие компоненты, мас.%: хром - 50-65; бондюжский карбюризатор - 0,3-1,0; хлористый аммоний - 1-5; оксид алюминия - остальное.

При диффузионном насыщении коррозионно-стойких сталей из данной смеси образуется равномерный диффузионный слой с зоной карбидных включений на поверхности, который обеспечивает высокую износостойкость.

Однако при использовании данной смеси для упрочнения деталей, у которых допускается износ более 0,0.2 мм (толщина зоны карбидных включений), детали имеют малый ресурс эксплуатации.

Задачей, решаемой изобретением, является увеличение толщины зоны карбидных включений в диффузионном слое при насыщении коррозионно-стойких сталей, что позволит увеличить срок эксплуатации деталей.

Поставленная задача решается тем, что в смесь, содержащую хром, бондюжский карбюризатор, дополнительно вводится хлорид олова и гидрокарбонат натрия при следующем соотношении компонентов, мас.%: хром - 30-35; бондюжский карбюризатор - 50-55; хлорид олова - 2-4; гидрокарбонат натрия - 10-15

При проведении диффузионного насыщения оксидная пленка, находящаяся на поверхности стали, препятствует диффузии атомов углерода вглубь стали. Введение хлорида олова в смесь позволяет разрушить оксидную пленку на поверхности стали и создать жидкометаллический слой, который препятствует в дальнейшем возникновению оксидов. Хромирующая смесь поставляет дополнительные атомы хрома для формирования диффузионного слоя. Гидрокарбонат натрия снижает окисляющую способность смеси.

Пример. Образцы из стали 06X19H9T размером $10\times10\times40$ помещались в центр стального тигля диаметром 50 мм и высотой 150 мм и засыпались смесью для диффузионного насыщения. Сверху тигля создавался плавкий затвор на основе песка и борного ангидрида, Тигель помещался в печь, нагретую до 1050° С, и выдерживался 6 ч. После окончания насыщения образцы извлекались из тигля и подвергались металлографическим исследованиям, результаты которых представлены в таблице.

№ опыта	Состав смеси, мас. %				Толщина	зоны
	Бондюжский карбюризатор	Гидрокарбонат натрия	Порошковый хром	Хлорид олова	карбидных включений диффузионно слое, мкм	В
1	55	10	33	2	80	
2	50	15	31	4	70	
3	54	13	30	3	80	
4	50	12	35	3	90	
5	61	9	29	1	25	
6	43	16	36	5	30	
7	Прототип: хром 50 - 65%, бондюжский карбюризатор $0,3-1\%$, хлористый аммоний $1-5\%$ оксид алюминия остальное				20	***************************************

Приведенные в таблице данные свидетельствуют, что при использовании заявленного состава смеси (опыты 1-4) после диффузионного насыщения в условиях, одинаковых с прототипом, толщина зоны карбидных включений составляет 70-90 мкм. При использовании смеси, принятой за прототип (опыт 7), толщина зоны карбидных включений не превышает 20 мкм. При использовании смесей, соотношение компонентов которых выходит за пределы заявленного состава (опыты 5-6), толщина зоны карбидных включений уменьшается.

Источники информации, принятые во внимание, при составлении заявки:

- 1. Цементация хромистой нержавеющей стали. А.Д. Шипилов, В.Г. Михеев. МиТОМ №6, 1962, с. 55-56.
- 2. Авторское свидетельство СССР № 956615, опубл. 07.09.1982 г. Бюл. №33, Н.Н. Митрохович, Б.Н. Панкин, В.П. Фетисов. Среда для карбохромирования стальных изделий.

028006

ФОРМУЛА ИЗОБРЕТЕНИЯ

Смесь для насыщения стальных деталей из коррозионно-стойких сталей углеродом и хромом, содержащая хром, бондюжский карбюризатор, отличающаяся тем, что дополнительно содержит хлорид олова и гидрокарбонат натрия при следующем соотношении компонентов, мас.%: хром - 30-35; бондюжский карбюризатор - 50-55; хлорид олова - 2-4; гидрокарбонат натрия - 10-15.

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2