РАСЧЕТ УРАВНЕНИЯ ДВИЖЕНИЯ МАЛЫХ КОЛЕБАНИЙ ЭЛЛИПТИЧЕСКОГО МАЯТНИКА С ЗАДАННОЙ НАЧАЛЬНОЙ УГЛОВОЙ СКОРОСТЬЮ ЕГО ДВИЖЕНИЯ

Локтионов А.В., Сеньков С.А.

Витебский государственный технологический университет, Витебск

Difficult movement of an elliptic pendulum is considered. Are made and solved the differential equations describing movements of a slider and a ball. In work it is accepted, that during the initial moment an angle of rotation of an arrow of a pendulum from a vertical and speed of a slider are equal to zero, angle speed of rotation of an arrow are not equal to zero. With the account accepted initial conditions the equations of movement of a slider and small fluctuations of a pendulum are received.

В работе [1] получено дифференциальное уравнение гармонических колебаний эллиптического маятника, состоящего из ползуна, шарика и стержня. При этом используется координатный способ задания движения ползуна и шарика. Вертикальная ось проведена через начальное положение центра тяжести системы, который движется ввиду отсутствия горизонтальных внешних сил по вертикали. Принято, что в начальный момент ползун находится в покое, угловая скорость вращения шарика $\dot{\phi} = \dot{\phi}_0 = 0$, угол отклонения $\phi = \phi_0 \neq 0$.

Рассмотрим эллиптический маятник, который состоит из ползуна I, перемещающегося без трения по горизонтальной прямой, и шарика II, подвешенного к ползуну I нерастяжимым стержнем (рис. 1). Масса ползуна I равна M, масса шарика — m, длина нерастяжимого стержня — l, момент инерции шарика относительно точки $O_1 - \mathcal{I}$.

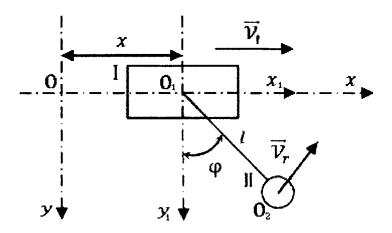


Рис. 1. Расчетная схема движения эллиптического маятника

По расчетной схеме рис. 1 принимаем, что в начальный момент угол $\phi = \phi_0 = 0$, а угловая скорость $\dot{\phi} = \dot{\phi}_0 \neq 0$ Найдем закон движения ползуна и шарика в зависимости от заданных начальных условий, при которых $\dot{\phi}_0 = \omega_0 \neq 0$

Для решения воспользуемся уравнением Лагранжа. Принимаем, что на маятник не действуют силы тяжести и потенциальная энергия системы $\Pi=0$. Система обладает двумя степенями свободы, а значит двумя обобщенными координатами x и ϕ . Тогда уравнения Лагранжа примут вид

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{x}} - \frac{\partial T}{\partial x} = 0,\tag{1}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{x}} - \frac{\partial T}{\partial x} = 0,$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\phi}} - \frac{\partial T}{\partial \phi} = 0.$$
(1)

Рассчитаем кинетическую энергию T системы:

$$T=T_{\rm I}+T_{\rm II},$$

где $T_{\rm I\!I}$ — кинетическая энергия первого тела, $T_{\rm I\!I}$ - кинетическая энергия второго

Кинетическая энергия ползуна определяется из выражения

$$T_{\rm I} = \frac{M}{2} V_{\rm I}^2$$
 или $T_{\rm I} = \frac{M \dot{x}^2}{2}$.

Так как центр массы шарика не совпадает с осью подвеса, то кинетическая энергия второго тела определится по формуле [2]

$$T_{II} = \frac{1}{2}m\mathcal{V}_I^2 + m\overrightarrow{\mathcal{V}_I}\overrightarrow{\mathcal{V}_r} + T_{r'}$$

где T_{r} – кинетическая энергия шарика в его движении относительно поступательно перемещающихся осей $x_1 O_1 y_1$.

$$T_r = \frac{1}{2} \mathcal{I} \dot{\varphi}^2, \tag{3}$$

$$\overrightarrow{v_1}\overrightarrow{v_r} = v_1 v_r \cos \varphi = \dot{x}l\dot{\varphi}\cos \varphi. \tag{4}$$

С учетом (3) и (4) кинетическая энергия шарика определяется из выражения:

$$T_{11} = \frac{1}{2}m\mathcal{V}_1^2 + ml\dot{x}\dot{\varphi}\cos\varphi + \frac{1}{2}J\dot{\varphi}^2.$$

Тогда полная кинетическая энергия системы будет равна

$$T = \frac{M}{2}\dot{x}^2 + \frac{m}{2}\dot{x}^2 + ml\dot{x}\dot{\phi}\cos\phi + \frac{1}{2}J\dot{\phi}^2.$$

Рассмотрим уравнение (1), найдем частные производные кинетической энергии по координате и скорости:

$$\frac{\partial T}{\partial \dot{x}} = M\dot{x} + m(\dot{x} + l\dot{\varphi}\cos\varphi), \tag{5}$$

$$\frac{\partial T}{\partial x} = 0. \tag{6}$$

$$\frac{\partial T}{\partial x} = \mathbf{0}.\tag{6}$$

Подставляя (5) и (6) в уравнение (1), получим

$$\frac{d}{dt}(M\dot{x} + m\dot{x} + ml\dot{\varphi}\cos\varphi) = 0. \tag{7}$$

Интегрируя уравнение (7) будем иметь

$$(M+m)\dot{x} + ml\dot{\varphi}\cos\varphi = C_1. \tag{8}$$

С учетом принятых начальных условий при $t=t_0=0$, $\dot{\phi}=\dot{\phi}_0$, $\phi=\phi_0=0$, $\dot{x} = \dot{x}_0 = 0$ из уравнения (8) получим $C_1 = ml\dot{\phi}_0$. Тогда уравнение (8) примет вид

$$(M+m)\dot{x} + ml\dot{\varphi}\cos\varphi = ml\dot{\varphi}_{\alpha}. \tag{9}$$

Из равенства (9) скорость движения ползуна определяется из выражения
$$\dot{x} = \frac{ml(\dot{\varphi}_0 - \dot{\varphi}\cos\varphi)}{M+m}. \tag{10}$$

Уравнения (10) выражает зависимость скорости ползуна от угловой скорости вращения и угла отклонения стержня l от вертикальной оси.

Интегрируя (10), получим

$$(M+m)x+ml\sin\varphi=ml\dot{\varphi}_0t+C_2. \tag{11}$$

С учетом принятых начальных условий при $t=t_0=0$, $\dot{\phi}=\dot{\phi}_0$, $\phi=\phi_0=0$, $\dot{x}=\dot{x}_0=0$ из уравнения (11) получим $C_2=0$.

Тогда уравнение (11) примет вид

$$x = \frac{ml(\dot{\varphi}_0 t - \sin \varphi)}{M + m}.$$
 (12)

Уравнение (12) выражает закон движения ползуна в зависимости от угла отклонения стержня l от вертикальной оси, угловой скорости и времени.

Рассмотрим уравнение (2), найдем частные производные кинетической энергии по координате и скорости:

$$\frac{\partial T}{\partial \dot{\varphi}} = ml\dot{x}\cos\varphi + J\dot{\varphi},\tag{13}$$

$$\frac{\partial T}{\partial \varphi} = -ml\dot{x}\dot{\varphi}\sin\varphi. \tag{14}$$

Подставляя (13) и (14) в уравнение (2), получим

$$\frac{d}{dt}\left[ml\dot{x}\cos\varphi + J\dot{\varphi}\right] + ml\dot{x}\dot{\varphi}\sin\varphi = 0. \tag{15}$$

Подставив в (15) выражение (10) имеем

$$\frac{d}{dt} \left[\frac{(ml)^2}{M+m} \dot{\phi}_0 \cos \varphi - \frac{(ml)^2}{M+m} \dot{\varphi} \cos^2 \varphi + \mathcal{I} \dot{\varphi} \right] + \frac{(ml)^2}{M+m} \dot{\varphi}_0 \dot{\varphi} \sin \varphi - \frac{(ml)^2}{M+m} \dot{\varphi}^2 \sin \varphi \cos \varphi = 0.$$
(16)

Обозначая $\frac{(ml)^2}{M+m} = B$, интегрируя уравнение (10), будем иметь

$$-B\dot{\phi}_0\dot{\phi}\sin\phi - B(\ddot{\phi}\cos^2\phi - \dot{\phi}^2 2\cos\phi\sin\phi) + J\ddot{\phi} + B\dot{\phi}_0\dot{\phi}\sin\phi -$$

$$-B\dot{\varphi}^2\sin\varphi\cos\varphi=0.$$

После преобразований получим дифференциальное уравнение маятника в виде:

$$-B\ddot{\varphi}\cos^2\varphi + B\dot{\varphi}^2\sin\varphi\cos\varphi + J\ddot{\varphi} = 0. \tag{17}$$

Для решения дифференциального уравнения (17) понизим порядок уравнения путем замены $p = \dot{\phi}$, тогда

$$\ddot{\varphi} = \frac{dp}{d\varphi} \frac{d\varphi}{dt} = p \frac{dp}{d\varphi}.$$
 (18)

С учетом (18) уравнение (17) примет вид

$$-Bp\frac{dp}{d\omega}\cos^2\varphi + \frac{B}{2}p^2\sin 2\varphi + Jp\frac{dp}{d\omega} = 0.$$
 (19)

Сократив каждое из слагаемых уравнения (19) на р, получим

$$\frac{dp}{d\varphi}(J - B\cos^2\varphi) + \frac{B}{2}p\sin 2\varphi = 0. \tag{20}$$

Разделяя переменные уравнения (20), будем иметь

$$\int \frac{dp}{p} = \int \frac{B}{2} \frac{\sin 2\varphi}{B \cos^2 \varphi - \mathcal{I}} d\varphi. \tag{21}$$

Рассмотрим интеграл правой части уравнения (21). Так как

$$d(B\cos^2\varphi - I) = B2\cos\varphi(-\sin\varphi)d\varphi = -B\sin 2\varphi d\varphi.$$

Следовательно,

$$B\sin 2\varphi d\varphi = -d(B\cos^2\varphi - J).$$

Тогда

$$\int -\frac{d(B\cos^2\varphi - \mathcal{I})}{2(B\cos^2\varphi - \mathcal{I})} = -\frac{1}{2}\ln|B\cos^2\varphi - \mathcal{I}|. \tag{22}$$

Подставляя (22) в уравнение (21) и учитывая, что $\int \frac{dp}{p} = \ln |p|$, получим:

$$\ln|p| = -\frac{1}{2}\ln|B\cos^2\varphi - \mathcal{I}| + \ln C_3.$$
 (23)

Из уравнения (23) следует, что

$$p = \frac{C_3}{\sqrt{B\cos^2\varphi - J}}.$$

Учитывая, что $p = \dot{\phi}$, получим

$$\dot{\varphi} = \frac{C_3}{\sqrt{B\cos^2 \varphi - \mathcal{I}}}.$$
 (24)

С учетом принятых начальных условий при $t=t_0=0$, $\dot{\phi}=\dot{\phi}_0$, $\phi=\phi_0=0$ из уравнения (24) получим $C_3=\dot{\phi}_0\sqrt{B-J}$.

Тогда уравнение (24) примет вид

$$\dot{\varphi} = \frac{\dot{\varphi}_0 \sqrt{B-\mathcal{I}}}{\sqrt{B\cos^2 \varphi - \mathcal{I}}} = \frac{\dot{\varphi}_0 \sqrt{B-\mathcal{I}}}{\sqrt{B-B\sin^2 \varphi - \mathcal{I}}}.$$

 \mathbb{C} учетом равенства $B = \frac{(ml)^2}{M+m}$ последнее примет вид

$$\dot{\varphi} = \dot{\varphi}_0 \sqrt{\frac{(ml)^2 - \mathcal{I}(M+m)}{(ml)^2 - (ml)^2 \sin^2 \varphi - \mathcal{I}(M+m)}}.$$
 (25)

Уравнения (25) выражает зависимость угловой скорости вращения маятника от угла отклонения стержня l от вертикальной оси и заданной начальной угловой скорости.

Из уравнения (25) найдем закон движения эллиптического маятника, считая угол φ малым. Так как для малых углов $\sin \varphi \approx \varphi$, $\cos \varphi \approx 1$, тогда $\sin^2 \varphi = \varphi^2$ (справедливо в диапазона от -20° до 20°). Тогда уравнение (25) примет вид

$$\sqrt{1 - \frac{(ml)^2 \, \varphi^2}{(ml)^2 - \Im(M+m)}} \, d\varphi = \dot{\varphi}_0 \, dt.$$
(26)

Введем замену $(ml)^2/[(ml)^2-\Im(M+m)]=a$, тогда уравнение (26) примет вид

$$\sqrt{1+a\varphi^2}\,d\varphi = \dot{\varphi}_0\,dt. \tag{27}$$

Для решения уравнения (27) воспользуемся заменой $\sqrt{1+a\phi^2}=p$. Получим

$$\varphi = \sqrt{\frac{1}{a}(p^2 - 1)}$$
, a $d\varphi = d\sqrt{\frac{1}{a}(p^2 - 1)} = p/\sqrt{a(p^2 - 1)}dp$.

Тогда уравнение (27) примет вид

$$\int p \frac{p}{\sqrt{\alpha(p^2-1)}} dp = \int \dot{\phi}_0 dt.$$
 (28)

Рассмотрим левую часть уравнения (28):

$$\int p \frac{p}{\sqrt{a(p^2 - 1)}} dp = \sqrt{\frac{1}{a}} \int \frac{p^2}{\sqrt{p^2 - 1}} dp.$$
 (29)

Введем замену $\sqrt{p^2-1}=t$ тогда $p=\sqrt{t^2+1}$, а $dp=(t/\sqrt{t^2+1})dt$.

Тогда уравнение (29) примет вид

$$\int_{a}^{1} \int_{a}^{t^{2}+1} \frac{t}{t} \frac{t}{\sqrt{t^{2}+1}} dt = \int_{a}^{1} \int_{a}^{t} \sqrt{t^{2}+1} dt.$$
 (30)

Введем замену $t = \operatorname{tg} x$ тогда $\sqrt{t^2 + 1} = 1/\cos x$, a $dt = (1/\cos^2 x) dx$.

Тогда уравнение (30) примет вид

$$\sqrt{\frac{1}{a}} \int \frac{1}{\cos x} \frac{1}{\cos^2 x} dx = \sqrt{\frac{1}{a}} \int \frac{1}{\cos^3 x} dx = \sqrt{\frac{1}{a}} \int \frac{\cos x}{(\cos^2 x)^2} dx = \sqrt{\frac{1}{a}} \int \frac{d \sin x}{(1 - \sin^2 x)^2}.$$
 (31)

Введем замену $\sin x = \cos y$. Тогда уравнение (31) примет вид

$$\sqrt{\frac{1}{a}} \int \frac{d\cos y}{(1-\cos^2 y)^2} = -\sqrt{\frac{1}{a}} \int \frac{\sin y \, dy}{(\sin^2 y)^2} = -\sqrt{\frac{1}{a}} \int \frac{1}{\sin^3 y} \, dy. \tag{32}$$

Так как для малых углов $\sin \mathbf{y} \approx \mathbf{y}$, то $\sin^3 \mathbf{y} \approx \mathbf{y}^3$. Тогда уравнение (32) примет вид

$$-\sqrt{\frac{1}{a}} \int \frac{1}{y^3} dy = -\sqrt{\frac{1}{a}} \int y^{-3} dy = \sqrt{\frac{1}{a}} \frac{1}{2y^2}.$$
 (33)

Введем обратную замену:

$$y \approx \sin y = \sqrt{1 - \cos^2 y} = \cos x.$$

Тогда уравнение (33) примет вид

$$\int_{a}^{1} \frac{1}{2\cos^{2}x} = \int_{a}^{1} \frac{1}{2} (1 + tg^{2}x).$$
 (34)

Учитывая, что $\operatorname{tg} x = t$, а $t = \sqrt{p^2 - 1}$, где $p^2 = 1 + a \varphi^2$, из (29) и (34) будем иметь

$$\int p \frac{p}{\sqrt{a(p^2-1)}} dp = \sqrt{\frac{1}{a}} \frac{1}{2} (1 + a\varphi^2).$$
 (35)

С учетом (35) уравнение (28) примет вид

$$\sqrt{\frac{1}{a}} \frac{1}{2} (1 + a \varphi^2) = \dot{\varphi}_0 t + C_4. \tag{36}$$

С учетом принятых начальных условий при $t=t_0=0$, $\phi=\phi_0=0$ из уравнения

(36) получим
$$C_4 = \sqrt{\frac{1}{a}} \frac{1}{2}$$
.

Тогда уравнение (36) примет вид

$$\sqrt{\frac{1}{a}} \frac{1}{2} (1 + a\varphi^2) = \dot{\varphi}_0 t + \sqrt{\frac{1}{a}} \frac{1}{2}.$$
 (37)

Подставляя в равенство (37) $a = (ml)^2/[(ml)^2 - J(M+m)]$ получим

$$\varphi = \sqrt{\frac{4[(ml)^2 - J(M+m)]}{(ml)^2 \, \varphi}} \dot{\varphi}_0 t \ . \tag{38}$$

Уравнение (38) выражает закон движения малых колебаний эллиптического маятника.

Подставляя уравнения (38) в (12) получим закон движения ползуна в зависимости от времени и заданной начальной угловой скорости вращения маятника.

ЛИТЕРАТУРА

- 1. Яблонский, А. А. Курс теоретической механики: в 2 т. / А. А. Яблонский. М.: Высшая школа, 1971. Т.2: Динамика. 488 с.
- 2. Бутенин, В. Н. Курс теоретической механики: в 2 т. / Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. М.: Наука, 1971. Т.2: Динамика. 464 с.