ВЛИЯНИЕ СТРУКТУРЫ МАТЕРИАЛА НА ДЕФОРМАЦИОННО-ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ КОМПОЗИТНЫХ КАРДИОИМПЛАНТАТОВ

Хиженок В.Ф., Шилько С.В.

Институт механики металлополимерных систем им. В.А. Белого НАН Беларуси, Гомель

Введение

Повышение качества жизни и улучшение демографической ситуации в Беларуси и России в значительной степени связано с лечением заболеваний сердечно-сосудистой системы, как основной причины смертности и инвалидности населения. Хирургическое лечение указанных заболеваний невозможно без массового испльзования средств протезирования. Приоритетное значение полимеров и эластомеров, как материалов для кардиоимплантатов, обусловлено их близостью биотканям сердца по химической природе и физико-механическим свойствам. Возможность управления свойствами названных материалов путем направленного армирования делает актуальным изучение влияние структуры получаемых анизотропных композитов на деформационно-прочностные характеристики.

Клапанные протезы с эластичными замыкательными элементами

Для выполнения требований, предъявляемых к распространенным кардиоимплантатам – искусственным клапанам сердца (ИКС), предложены различные конструкции клапанных протезов на основе синтетических и биологических материалов [1]. Перспективны ИКС с композитными замыкательными элементами, в основном моделирующие морфологию и деформационные свойства природного прототипа (миокарда). В частности, на рис. 1, *а* представлен вариант конструкции ИКС с тремя запирающими элементами (створками), а на рис. 1, *б* моделируется фаза его открытия за счет прогиба створок. Использование эластичных биосовместимых полимерных материалов в принципе позволяет создать клапанный протез, эквивалентный естественному клапану сердца, но, в отличие от биологического протеза, не подверженный кальцификации [2]. Проблема заключается в обеспечении необходимого уровня прочностных характеристик эластичных ИКС, что резко сужает ограниченный (по критерию биосовместимости) перечень пригодных для изготовления кардиоимплантатов базовых полимерных материалов.

Рис. 1. Искусственный клапан сердца с эластичными створками (а) и распределение изгибных перемещений в стадии открытия ИКС (б)

Ниже рассмотриваются композиты на основе полиуретана (ПУ) и политетрафторэтилена (ПТФЭ)с армирующим наполнителем в виде волокон полиэфира и полиамида, бионейтральность которых обеспечивалась капсуляцией в матричной фазе.

Определение деформационно-прочностных характеристик матричных материалов

Деформационно-прочностные характеристики полиуретана и политетрафторэтилена, допущенных для использования в кардиохирургии, определялись на машине Instron 5567 по ГОСТ 11262-80 (растяжение). Испытывались образцы ПУ в виде полосок размером 10х0,8х50 и ПТФЭ в виде лопаток толщиной 0,96 мм, шириной 2 мм и длиной рабочей части 10 мм. Результаты статических испытаний приведены на рис. 2 и в табл. 1, 2.

Рис. 2. Диаграмма «нагрузка - перемещение» образца ПУ

Таблица 1

11			di esta	ALC: No	語っていたい	8-5-4-6	1.1	1.15
	Длина рабочей части образца (mm)	Ckopocts (mm/min)	Модуль упругости (MPa)	Макс. напряж. (MPa)	Деформация в момент текуч. (%)	Макс. нагруэка (N)	Деформация при разрыве (%)	Толщкна (тт)
1	50.00	100.00	12.30	52.33	710.00	418.61	710.82	0.80
2	50.00	100.00	11.10	44.01	703.33	352.11	703.33	0.80
3	50.00	100.00	9.55	36.68	666.67	293.46	667.02	0.80
4	50.00	100.00	10.37	46.90	713.33	375.17	714.64	0.80
5	50.00	100.00	11.19	48.41	710.00	387.24	710.99	0.80
Mean	50.00	100.00	10.99	45.66	700.67	365.32	701.36	0.80
S.D.	0.00	0.00	1.02	5.85	19,35	46.79	19.63	0.01
C.V.	0,00	0.00	9.40	12.81	2.76	12.81	2.80	0.00
Ainimum	50.00	100.00	9,55	36.68	666.67	293.46	667.02	0.8
laximum	50.00	100.00	12.30	52.33	713.33	418.61	714.64	0.81
Range	0.00	0.00	2.75	15.64	46.67	125.15	47.62	0.0

Механические характеристики ПУ

					Constraints and an and		March 1990	-11.11
	Длнна рабочей части образца (mm)	Скорость (mm/min)	Модуль упругости (MPa)	Макс. напряж. (МРа)	Деформация в момент текуч. (%)	Макс. нагрузка (N)	Деформация при разрыве (%)	толщнна (mm)
1	10.00	10.00	357.75	36,55	292.83	69.82	293.45	0.96
2	10.00	10.00	451.44	34.34	259.00	65.59	260.09	0.96
3	10.00	10,00	400.74	32.60	232.81	62.26	233.24	0.96
4	10.00	10.00	478.89	34.08	259.85	65.10	260.84	0.96
Mean	10.00	10.00	422.20	34.39	261.12	65.69	261.91	0.96
S.D.	0.00	0,00	53,80	1.63	24.58	3.12	24.64	0.00
_C.V.	0.00	0.00	12.74	4.75	9.41	4.75	9.41	0.00
Minimum	10.00	10.00	357.75	32,60	232.81	62.26	233.24	0.96
laximum	10.00	10.00	478.89	36.55	292.83	69.82	293.45	0.96
Range	0.00	0,00	121.14	3.96	60.01	7.56	60.21	0.00

Механические характеристики ПТФЭ

Видно, что указанные гемосовместимые полимеры характеризуются значительными предельными деформациями, что важно для реализации больших изгибных перемещений замыкательных элементов. Вместе с тем, для реализации более высокой прочности при малой изгибной жесткости, а также исходя из структуры миокарда, содержащего относительно жесткие волокна (хорды), следует изучить возможности направленного армирования указанных биосовместимых материалов высокопрочными и высокомодульными волокнами.

Расчет упругих констант армированных материалов

Направленная укладка волокон в одной плоскостей (представляет интерес и более сложные, пространственные схемы армирования) описывается моделью ортотропного материала, деформационные свойства которого описываются набором упругих констант E_x , E_y , E_z , v_{xy} , v_{yz} , v_{xz} , G_{xy} , G_{yz} , G_{xz} . Расчет констант, исходя из объемного содержания, модуля упругости и коэффициента Пуассона матрицы и наполнителя, производили по формулам, приведенным, в частности, в работе [3].

Исходя из описанных выше испытаний на растяжение, задавались модули упругости матриц (ПУ и ПТФЭ) $E_{\Pi y} = 10$ МПа и $E_{\Pi T \Phi \Im} = 0,4$ ГПа соответственно; коэффициенты Пуассона указанных материалов принимались равными $v_{\Pi y} = 0,43$ и $v_{\Pi T \Phi \Im} = 0,45$. Наполнителем служили волокна полиэфира и полиамида с модулем упругости и коэффициентом Пуассона соответственно:

Были рассмотрены варианты структуры материала (рис. 3), различающиеся по объемной доле волокон в продольном и поперечном направлении, а также углу армирования.

1 – $C_1 = 0,2; C_2 = 0; \alpha = 0$ (рис. 3, *a*); 2 – $C_1 = 0; C_2 = 0,2; \alpha = 0$ (рис. 3, *б*); 3 – $C_1 = 0,1; C_2 = 0,1; \alpha = 45^{\circ}$ (рис. 3, *в*); 4 – $C_1 = 0,1; C_2 = 0,1; \alpha = 90^{\circ}$ (рис. 3, *г*), где C_1, C_2 – объемные доли волокон, ориентированных в продольном направлении и поперечном направлении; α – угол ориентации волокон.

Рис. 3. Варианты армирования материала

Полученные упругие константы для композитов на основе полиуретана и политетрафторэтилена приведены в табл. 3, 4 соответственно.

Таблица 3

Цаприанорания	Вариант армирования и материал волокон									
Паименование		полиэфир				полиамид				
параметра	1	2	3	4	1	2	3	4		
<i>Е</i> _x , МПа	208	15,09	112,7	19,14	488	15,23	252,9	20,1		
<i>Е</i> _у , МПа	15,09	208	112,7	19,14	15,23	488	252,9	20,1		
<i>Е</i> 2, МПа	15,09	15,09	26,47	26,47	15,23	15,23	30,81	30,81		
<i>G</i> _{ху} , МПа	5,201	5,201	5,201	45,59	5,227	5,227	5,227	103,7		
G _{yz} , МПа	4,36	5,201	4,78	9,56	4,366	5,227	4,797	9,593		
<i>G_{х2},</i> МПа	5,201	4,36	4,78	9,56	5,227	4,366	4,797	9,593		
V _{xy}	0,436	0,032	0,059	0,855	0,424	0,013	0,026	0,931		
V _{yz}	0,73	0,436	0,715	0,121	0,744	0,424	0,73	0,058		
V _{xz}	0,436	0,73	0,715	0,121	0,424	0,744	0,73	0,058		

Упругие константы композита на основе ПУ в зависимости от способа армирования

Наименорание	Вариант армирования и материал волокон									
Папаметра		поли	іэфир		полиамид					
Парамстра	1	2	3	4	1	2	3	4		
<i>Е</i> _х МПа	520	466,1	493,4	474,3	800	524,4	666,5	542,4		
<i>Е</i> _у , МПа	466,1	520	493,4	474,3	524,4	800	666,5	542,4		
E ₂ , MПа	466,1	466,1	467,3	467,3	524,4	524,4	545,4	545,4		
<i>G_{xy},</i> МПа	163,6	163,6	163,6	172,6	184,5	184,5	184,5	243,9		
<i>G_{yz},</i> МПа	156,6	163,6	160,1	320,2	165,7	184,5	175,1	350,3		
G _{xz} , МПа	163,6	156,6	160,1	320,2	184,5	165,7	175,1	350,3		
V _{xy}	0,452	0,405	0,427	0,256	0,44	0,288	0,348	0,362		
V_{yz}	0,488	0,452	0,471	0,453	0,582	0,44	0,524	0,427		
V _{xz}	0,452	0,488	0,471	0,453	0,44	0,582	0,524	0,427		

Упругие константы композита на основе ПТФЭ в зависимости
от способа армирования

Можно заметить, что даже при использовании эластомерной ПУ матрицы исследуемые материалы характеризуются существенно более высоким модулем упругости в сравнении с миокардом (на рис. 4 приведены данные, полученные авторами на подопытных животных (крысах) методом контактного индентирования).

Рис. 4. Оценка статического модуля упругости миокарда в области передних и задних стенок правого и левого желудочков сердца, Па

Анализ деформационно-прочностных характеристик композитного ИКС

Расчет напряженно-деформированного состояния запирающего элемента выполнялся в программной среде SolidWorks (Cosmos/Works) на геометрически идентичной 3D модели. Задаваемые граничные условия соответствовали свободному краю запирающего элемента и соединению части его контура с относительно жестким опорным кольцом (рис. 1а). На поверхности элемента задавалось равномерно распределенное давление, равное систолическому $p(x) = p_0 = 13,33$ кПа (100 мм рт. ст.) в момент начала открытия клапана (рис. 5, *a*). Более точное распределение давления p(x) может быть взято из результатов гидродинамического анализа, проведенного, например, в [5]. Эквивалентные напряжения определялись по критерию Мизеса.

Результаты расчета НДС композитного запирающего элемента постоянной толщины h = 1 мм приведены на рис. 56,6 и в табл. 5. В результате проведенных расчетов установлено, что эквивалентные напряжения достигают максимума при значении угла армирования $\alpha = 45^{\circ}$ (рис. 5). В диапазоне $15^{\circ} < \alpha < 90^{\circ}$ зависимость перемещения от угла армирования близка к линейной. Оптимальной с точки зрения минимума эквивалентных напряжений при требуемом изгибном перемещении кончика запирающего элемента (не менее 2 мм), по-видимому, является близкое к однонаправленному (угол ориентации волокон $\alpha = 80-90^{\circ}$) армирование полиуретана полиэфирными волокнами. Запирающие элементы на основе ПТФЭ при толщине h = 1 мм являются слишком жесткими, что, очевидно, вызовет увеличенное гемодинамическое сопротивление при открытии ИКС. Приемлемая эластичность запирающих элементов при заданной толшине достигается при использовании композитов на основе эластомера ПУ. Однако даже в этом случае материал имплантата имеет существенно более высокий модуль упругости в сравнении с биопрототипом (см. рис. 4).

Рис. 5. Расчетная схема запирающего элемента (а), эквивалентные напряжения (б) и перемещения изгиба (в) при максимальном открытии ИКС

Таблица 5

Эквивалентные напряжения и перемещения изгиба запирающего элемента ИКС для двух видов матрицы и наполнителя

		Наполнитель и вариант армирования								
Матрица			Поли	эфир		Полиамид				
		1	2	3	4	1	2	3	4	
	σ , МПа	1,14	1,59	1,09	1,44	1,18	2,24	1,17	1,65	
ШУ	<i>U</i> , мм	0,81	1,95	0,75	0,99	0,79	1,1	0,62	0,76	
ПТФЭ	σ, МПа	0,95	0,94	0,95	1,11	0,96	0,94	0,95	1,1	
	<i>U</i> , мм	0,035	0,037	0,036	0,034	0,027	0,033	0,029	0,028	

Рис. 6. Зависимость эквивалентных напряжений (а) и перемещений изгиба (б) от угла армирования

Критическим показателем работоспособности ИКС с разрабатываемыми эластичными элементами является прочность последних в условиях длительной циклической нагрузки (не менее 10 лет функционирования протеза или 400 млн. срабатываний запирающих элементов) в области больших деформаций. Для прогнозирования долговечности по данному критерию проводили расчет на усталость при изгибе с использованием программы КЭ анализа SolidWorks/Cosmos. В расчете были использованы данные по гига-усталости (усталости в области сотен миллионов циклов) полиуретанов (рис. 7), полученные в [2].

Рис. 7. Усталостная кривая для ПУ по данным [2]

На рис. 8 показана зона возникновения повреждений и расчетная оценка ресурса (число циклов до разрушения) замыкательного элемента ИКС в соответствии с гипотезой линейного суммирования усталостных повреждений.

Рис. 8. Оценка усталостной прочности эластичного ИКС: локализация повреждений в замыкательном элементе (a), прогнозируемый срок службы ИКС (б).

Видно, что усталостная долговечность эластичного кардиоимплантата весьма высока и приближается к требуемой. Тем не менеее, существенная неоднородность в расчетном распределении повреждений, необходимость реализации значительных изгибных перемещений и обеспечения равнопрочности конструкции с учетом гидролиза эластомера в биологически активной среде, показывает необходимость дальнейшей геометрической оптимизации и совершенствования структуры материала запирающих элементов для более близкого соответствия протезируемым тканям сердца.

Заключение

Направленно-армированные материалы на основе полимеров и эластомеров наиболее перспективны для создания кардиопротезов, эквивалентных природным по геометрическим и деформационным характеристикам.

Моделирование деформационных характеристик и анализ усталостной прочности выявил потенциальную работоспособность эластичных запирающих элементов искусственного клапана сердца на основе направленно-армированного полиуретана при условии дальнейшей геометрической и структурной оптимизации с учетом гидролиза в биологически активной среде.

ЛИТЕРАТУРА

- Fradet G.J., Jamieson W.R.E., Abel J.G., Lichtenstein S.V., Miyagishima R.T., Ling H., Tyers G.F.O. Clinical performance of biological and mechanical prostheses // The Annals of Thoracic Surgery. Vol. 60, Suppl. 2, 1995, pp. 453-458.
- Aguirre A.F., Oliva M., Schoephoerster R.T., Kasyanov V.A. Static and dynamic mechanical testing of a polymer with potential use as heart valve material // Summer Bioeng: Conf., Florida, June 25–29, 2003. pp. 1039-1040.
- 3. Малмейстер А.К., Тамуж В.П., Тетерс Г.А.. Сопротивление жестких полимерных материалов. Рига: Зинатне, 1972.
- 4. Армированные пластики / В.А. Бунаков [и др.]; под ред. Г.С. Головкина, В.И. Семенова. М.: МАИ, 1997.