3. Локальные войны и вооруженные конфликты конца XX – начала XXI века. Информационно-аналитический обзор / Под ред. И. А. Мисурагина. – Минск : УО «ВА РБ», 2007.

УДК 623.437

Анализ развития модульной военной техники по опыту зарубежных армий

Цыганков В. Н., Данилец А. Н. УО «Военная академия Республики Беларусь»

Выполнен анализ развития модульной военной техники зарубежных армий горизонтального, вертикального и распределенного видов модульности.

В целях успешного выполнения большого многообразия боевых задач техника вооруженных сил должна иметь максимальное количество унифицированных и стандартизованных узлов и агрегатов, обладать высокими показателями надежности, подвижности, эргономичности, соотношения стоимость — эффективность и др. По этому пути осуществляется развитие военной техники армий практически всех стран мира. Одним из направлений такого развития является внедрение новых технических решений при помощи разработки семейств модульной военной техники [1].

Реализация модульного принципа построения машин направлена на достижение различных целей. Во-первых, за счет модульности предполагается снижение затрат вследствие использования общих элементов (агрегатов, узлов, сборочных единиц) в конструкциях машин различного назначения или семейства на едином базовом шасси. Во-вторых, желание достичь такого уровня взаимозаменяемости модулей внутри семейства транспортных и боевых средств, который бы позволил осуществлять этот процесс в полевых условиях с незначительными затратами сил и времени. В зарубежных армиях рассматривается несколько видов модульности. Например, согласно классификации, разработанной в научно-исследовательском центре сухопутных войск США, модульность боевых и транспортных средств подразделяется на несколько видов: горизонтальную, вертикальную и распределенную [2]. Что понимается под каждым из этих видов?

Горизонтальная модульность. Составные части модульной машины соединяются или сочленяются воедино шарнирно, либо жестко стыкуются друг с другом. Каждый из модулей имеет различное назначение: один из них может быть предназначен для размещения экипажа, другой для уста-

новки вооружения или специальной техники и т.д. Как правило, один модуль оснащается силовой установкой (ведущий), а другой имеет функциональное назначение (ведомый), а также модули могут представлять собой полноценные машины, сочлененные между собой для лучшей проходимости.

Вертикальная модульность. В данном виде модульности используется единое базовое шасси с силовой установкой, трансмиссией, подвеской, движителем, отделением управления и устройством для установки функциональных модулей предназначенных для решения различных конкретных задач.

По мнению зарубежных специалистов, данный вид модульных машин является одним из наиболее перспективных. Эксперты считают, что в зарубежных армиях этот тип модульности был впервые реализован во время второй мировой войны. Тогда шасси основного боевого танка было использовано в качестве базового для размещения противотанковой пушки, а также для монтажа различных артиллерийских систем [2].

В настоящее время одним из ключевых для вертикальных модульных машин является требование — возможность замены функционального модуля в полевых условиях в короткие сроки [1].

В зарубежных армиях разработан ряд различных быстрозаменяемых модулей с помощью системы «мультилифт». Функциональные модули представлены различными типами: огневой поддержки, материальнотехнического и инженерного обеспечения, медико-эвакуационных мероприятий и другими.

В научно-исследовательском центре сухопутных войск США проводятся исследования, направленные на создание семейства автомобилей, у которых помимо функционального модуля в полевых условиях будет изменяться длина базового шасси и, соответственно, колесная формула — от 6×6 до 10×10 . В данной системе планируется применить модульность двух видов — вертикальную и распределенную [2].

Распределенная модульность. В данном виде модульности функции распределены между различными модулями, являющимися самостоятельными полноценными машинами, объединенными в единую информационную сеть. Некоторые образцы техники, как правило, безэкипажные, что способствует уменьшению потерь личного состава. Они требуют меньше броневой защиты, что способствует повышению подвижности и грузоподъемности.

В настоящее время в научно-исследовательском центре сухопутных войск США ведутся работы по созданию модульной боевой системы с распределенной модульностью которая будет включать экипажный и безэкипажные модули. Экипаж из четырех человек будет состоять из механика-водителя, командира и двух операторов для управления без-

экипажными машинами. В машине управления экипажу не нужно будет воспринимать нагрузку от выстрелов пушки и находиться вместе с бое-комплектом. В свою очередь безэкипажным машинам не потребуется дополнительного бронирования, динамической и активной защиты и других качеств [2].

Таким образом, развитие и применение модульной техники, в которой функциональные модули будут заменяться или дополнительно устанавливаться в полевых условиях силами одного-двух человек в короткие сроки позволяет увеличить разнообразие выполняемых задач одним образцом техники, быстро, эффективно и наименее затратно решать различные боевые задачи. Помимо этого, применение безэкипажных модулей позволяет эффективно выполнять боевые задачи с наименьшими потерями.

Литература

- 1. Банников, В. Ю. Анализ технических решений по повышению живучести военной автомобильной техники / В. Ю. Банников, В. Н. Цыганков // Вестник ВА РБ. -2017. №2 (55). С. 101-107.
- 2. Изюмов, Д. Зарубежная модульная военная автомобильная и бронетанковая техника / Д. Изюмов // Зарубежное военное обозрение. -2018. -№ 10 (859). C. 46–51.

УДК 623.437

Направления совершенствования технической разведки

Цыганков В. Н., Ковалев В. П. УО «Военная академия Республики Беларусь»

Предложены направления совершенствования технической разведки: совершенствование организации технической разведки за счет перераспределения решаемых задач; применение технических средств для повышения эффективности технической разведки.

Техническая разведка включает добывание, сбор, изучение, анализ и обобщение данных, необходимых для организации и осуществления автотехнического обеспечения подразделений, частей и соединения при выполнении ими боевых задач [1].

Техническая разведка оказывает определяющее влияние на эффективность процесса восстановления вышедшего из строя вооружения и военной техники (ВВТ). Своевременность и полнота данных о количестве, местах нахождения и состоянии вышедшего из строя ВВТ позволяет в более