3. Мрочек, Ж. А. Быстрее и точнее. Промышленность Беларуси / Ж. А. Мрочек, В. А. Лойко. – 1980, – № 5.

4. Зимон, А. Д. Адгезия пленок и покрытий. – М.: Химия, 1977.

УДК 621.793

Комаровская В. М., Терещук О. И. ПОЛУЧЕНИЕ АЛМАЗОПОДОБНЫХ ПОКРЫТИЙ НА ПОВЕРХНОСТИ КЕРАМИЧЕСКИХ ДЕТАЛЕЙ РVD-МЕТОДОМ С ИСПОЛЬЗОВАНИЕМ ИОННО-ЛУЧЕВОГО ПЛАНАРНОГО ИСТОЧНИКА

Белорусский национальный технический университет, г. Минск, Республика Беларусь

Упрочнение поверхности нагруженных керамических деталей в машиностроении является актуальным направлением исследований. Повышение коррозионной стойкости и износостойкости, уменьшение коэффициента трения (µ) для трущихся деталей, таких как керамические втулки, подшипники, часто используемые в горнодобывающей технике, возможно с использованием покрытий, получаемых вакуумными ионно-плазменными методами.

В качестве образца использовалась плоская деталь из алюмокерамики (Al_2O_3), часто используемой в машиностроении. Технологический процесс проводился на вакуумной установке модели BУ-1A, которая была модернизирована (см. рисунок 1).

Образец закреплялся на оснастке напротив ионно-лучевого планарного источника на выходе из реактора. Технологическая система, используемая для напыления, представлена на рисунке 2.

Экспериментально установлено, что для наилучшей равномерности осаждаемого на подложке покрытия подачу реактивного газа пропана (C_3H_8) в реактор необходимо проводить в шахматном порядке, не допуская расположения двух противолежащих выходных концов газовых трубок на одном уровне.

В реакторе ионизировались молекулы газа пропана и загоралось облако плазмы, в результате чего происходило осаждение атомов углерода PVD-методом на поверхности изделия. Для стабилизации разряда использовался магнетронный компенсатор, испускающий

электроны во внутреннюю область реактора и нейтрализующий таким образом плазму.

Рисунок 1 – Экспериментальная вакуумная установка

Рисунок 2 – Технологическая система для получения алмазоподобного покрытия на керамическом образце

Технологические параметры работы магнетронного компенсатора приведены в таблице 1.

Таблица 1 – Технологические параметры работы магнетронного компенсатора

Газ	Расход, см ³ /мин	Длительность процесса, мин	Напряжение U, B	Ток I, mA	Давление, Па	Мощность, Вт
Ar	15,5	40	400-450	500	$5,9 \cdot 10^{-1}$	250

В таблице 2 представлены режимы работы ионного источника.

Таблица 2 – Режимы источника ионов

Газ	Расход, см ³ /мин	Длительность процесса, мин	Напряжение U, В	Ток I, mA	Давление, Па
C_3H_8	80	180	900	20	$5,9 \cdot 10^{-1}$

В результате на керамическом образце было получено покрытие, показанное на рисунке 3.

Рисунок 3 – Нанесенный слой алмазоподобного покрытия на керамический образец

Толщина алмазоподобного покрытия составила 500 нм. Покрытие имеет высокую твердость – при испытании на царапины алмазным индентором борозд не остается, покрытие не истирается металлической тонкопроволочной губкой.

ЛИТЕРАТУРА

1. Гаршин, А. П. Керамика для машиностроения / А. П. Гаршин, В. М. Гропянов, Г. П. Зайцев. – М.: Научтехлитиздат, 2003. – 384 с.

УДК 621.793

Комаровская В. М., Терещук О. И. ОСАЖДЕНИЕ АЛМАЗОПОДОБНЫХ ПОКРЫТИЙ РVD-МЕТОДОМ С ИСПОЛЬЗОВАНИЕМ ПЛАНАРНОГО ИОННО-ЛУЧЕВОГО ИСТОЧНИКА

Белорусский национальный технический университет, г. Минск, Республика Беларусь

Нанесение алмазоподобных покрытий с целью увеличения коррозионной стойкости и износостойкости на металлические подложки, имеющие криволинейную поверхность (цилиндры, сферы), является важной проблемой в сфере вакуумных тонкопленочных покрытий.

Для нанесения покрытия на цилиндрическую поверхность вала (см. рисунок 1) из коррозионностойкой стали AISI 304 (08Х18Н10), использовали экспериментальную деталь идентичную по составу и геометрическим параметрам исходной детали (см. рисунок 2).

Рисунок 1 – Вал привода вращения цилиндрического магнетрона. Область покрытия – верхняя шейка вала