поле. – Новополоцк: ПГУ, 1999. – 240 с. 3. Хейфец М.Л., Кожуро Л.М., Мрочек Ж.А. Процессы самоорганизации при формировании поверхностей. – Гомель: ИММС НАНБ, 1999, – 276 с. 4. Абрамов В.И. Исследование технологического процесса упрочнения деталей ферропорошками в пульсирующем магнитном поле; Автореф. дис. ...канд. техн. наук: 05.02.08 / Физ. -техн. ин-т Акад. наук БССР, - Минск, 1982.–19 с. 5. Акулович Л.М., Рощеня М.А. Выбор магнитных и электрических параметров процесса магнитоэлектрического упрочнения в среде азота. – В сб.: Вопросы прочности и пластичности металлов. Минск: ФТИ АН БССР 1974, с. 213-214. 6. Мрочек Ж.А., Кожуро Л.М., Филонов И.П. Прогрессивные технологии восстановления и упрочнения деталей машин. – Минск: УП «Технопринт», 2000. -268 с. 7. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. – М.: Высш. шк., 1978. –528 с. 8. Мрочек Ж.А., Кадников С.А., Кожуро Л.М., Акулович Л.М. Оптимизация технологических параметров формирования износостойких покрытий электромагнитным способом // Электронная обработка материалов. - 1991, №2. – С. 22-25.

УДК 621.791.72

Кардаполова М. А., Дьяченко О. В.

УСТАНОВЛЕНИЕ КОРРЕЛЯЦИОННЫХ ЗАВИСИМОСТЕЙ МЕЖДУ ИНТЕНСИВНОСТЬЮ ИЗНАШИВАНИЯ, ФАЗОВЫМ СОСТАВОМ И МИКРОТВЕРДОСТЬЮ ПОКРЫТИЙ НА ОСНОВЕ ЖЕЛЕЗА ПОСЛЕ ЛАЗЕРНОГО ЛЕГИРОВАНИЯ

Белорусский национальный технический университет Минск, Беларусь

Повышение требований техники и промышленности к свойствам поверхностных слоев вызывает необходимость создания композиционных многокомпонентных покрытий, включающих в свой состав химические соединения различных металлов. Установлено, что применение таких защитных покрытий обеспечивает получение на рабочей поверхности слоя, обладающего наряду с хорошей прирабатываемостью еще и комплексом высоких физико-механических и эксплуатационных свойств.

Опыт исследований комбинированных защитных покрытий, получаемых с использованием лазерного оплавления, показывает, что структура, свойства и работоспособность покрытий в значительной степени зависят от технологических параметров лазерной обработки (скорости перемещения луча, его диаметра, коэффициента перекрытия лазерных дорожек и др.)/1, 2/.

Для исследования влияния технологических параметров на структуру и некоторые физико-механические свойства покрытий использовали методы математического планирования - метод полного факторного эксперимента и центральный ортогональный композиционный план (ЦКОП) для двух факторов. /3 – 5, 7/.

Цель настоящей работы – исследовать корреляционную зависимость между интенсивностью изнашивания, фазовым составом и микротвердостью покрытий из самофлюсующихся сплавов на железной основе, а также влияние параметров лазерной обработки и легирования на количество упрочняющей фазы.

Для исследования фазового состава, микротвердости и сравнительных испытаний на износ использовались образцы стали 45 прямоугольной формы сечением 10 х 10 и длиной 30 мм, на которые напыляли самофлюсующийся сплав из порошка ПР-Х4Г2Р4С2Ф следующего химического состава (в %): Fe (83.1 – 87.6), B (3.3 – 4.3), Cr (3.5 – 4.5), Si (2.0 – 2.5), Mn (2.0 – 2.5), C (1.0 – 1.2), V (0.5 – 0.9), Al (0.05 – 0.5), Cu (0.05 – 0.5). В качестве установки для напыления использовали УПУ-3Д с источником питания ИПН-160/600 и плазмотроном ПП-25 на режимах: *I* = 250 A, U = 80 B, P = 0.06 ГПа. Толщина слоя составляла 0.6 мм. Далее на напыленный слой наносились легирующие обмазки на основе карбида бора, боридов тантала и молибдена на клеевой связке (3% клея «АGO» в ацетоне) [6]. Толщина слоя обмазки составляла 0.09 – 0.11 мм контролировалась толщиномером МТ-40НЦ

Оплавление осуществляли непрерывным лазером ЛГН-702 мощностью N = 800 Вт при диаметре пятна лазерного луча от $d_l = 1.0 \cdot 10^{-3}$ м до $d_l = 3.0 \cdot 10^{-3}$ м со скоростями перемещени $V_1 = 50$ мм/мин, $V_2 = 100$ мм/мин, $V_3 = 150$ мм/мин, $V_4 = 200$ мм/мин, $V_4 = 300$ мм/мин, с коэффициентами перекрытия $k_{nep} = 0.8$ и $k_{nep} = 1.2$.

После напыления и оплавления образцы разрезали поперек лазерных дорожек для к ключения влияния нестабильности температурных условий нагрева и охлаждения на краях образца.

Микрошлифы травили в 5-% растворе пикриновой кислоты в спирте, затем в 5-% раство ре азотной кислоты в спирте.

Замер микротвердости проводили на микротвердомере ПМТ-3 на травленных поперечных микрошлифах в покрытиях и переходной зоне.

Рентгеновские съемки производились на дифрактометре ДРОН 3.0 при скорости поворота образца 1 град/мин в медном монохроматизированном излучении в максимально возможном интервале углов от 10° до 75° для качественного и количественного фазового анализа.

Ускоренные сравнительные испытания материалов на износ при сухом трении проводили на машине трения МТ – 1 при линейной скорости вращения истирающего диска 2,3 м/с (угловой 880 об/мин) нагрузке Р (30 – 70 H), твердости диска 40 -45 HRC.

Полученные данные обрабатывали методами математического планирования.

Поскольку число варьируемых параметров невелико, оказалось возможным реализовать полную реплику, в которой число опытов Q = 2 в степени, соответствующей числу факторов *n*, позволяющую в ходе эксперимента варьировать одновременно несколькими параметрами различной физической природы и получать раздельную, независимую оценку коэффициентов, что невозможно, например, при реализации дробной реплики. При этом необходимо, чтобы все независимые переменные, влияющие на процесс, изменялись на двух уровнях: минимальном и максимальном.

Серия состояла из 8 основных опытов. Полученная модель считалась линейной и учитывала взаимодействие факторов

$$Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_3 + B_{12} X_1 X_2 + B_{13} X_1 X_3 + B_{23} X_2 X_3 . \tag{1}$$

Для составления таблицы данных (матрицы планирования) находили пределы изменения основных входных параметров, в качестве которых были приняты технологические параметры лазерной обработки. Технологические факторы X_1 – скорость луча лазера относительно детали, X_2 – диаметр лазерного пятна и X_3 – коэффициент перекрытия, выбирали исходя из возможности их изменения при условии точного измерения их величин, а также учитывая их взаимную независимость (ортогональность).

При неадекватности линейного уравнения переходим к плану второго порядка /5/.

Для этого возьмем коэффициент перекрытия возьмем на максимальном уровне, который примем за + 1.

Получаем двухфакторную модель, устанавливающую зависимость между количеством вещества у, %, скоростью движения луча лазера относительно детали (X_1) и диаметром луча лазера (X_2) .

$$Y = b_0 + \sum_{i=1}^{k} b_i x_i + \sum_{i=1}^{k} b_{ij} x_i x_j + \sum_{i=1}^{k} b_{ii} x_i^2, \qquad (2)$$

Y – параметр оптимизации; b₀, b_i, b_{ij}, b_{ii} – коэффициенты уравнения;x_i – кодированное значение (уровень) фактора; k – количество факторов.

Далее оценивали корреляции между основными параметрами оптимизации (износостойкостью покрытий и фазовым составом покрытия). Для каждой пары факторов рассчитывали коэффициенты парной корреляции.

После расчетов проведенных по указанной методике получены уравнения регресии для покрытий после плазменного напыления и легирования MoB, TaB и B₄C.

Таблица 1.	Уравнения регрессии полученные для покрытий, легированных МоВ
Фаза	Уравнения регрессии
Fe	$Y_1 = 24.625 + 4.792x_2 - 1.325x_1x_2$
MoB	$Y_2 = 8.642 + 0.438x_1 - 0.354x_2 + 0.396x_1x_2$
Бориды Fe	$Y_3 = 18.333 + 0.8x_1 + 1.142x_3 + 2.117x_1x_2$
Мо	$Y_4 = 11.091 - 1.908x_2 + 0.575x_1x_2$
Карбид железа	$Y_5 = 8.483 - 0.883x_1 - 0.658x_2 + 0.683x_3 + 0.558x_1x_2 - 0.65x_1x_3 - 0.592x_2x_3$
Карбиды Сг, V	$Y_6 = 18.925 - 0.858x_1 + 1.383x_2 + 0.642x_3 - 0.75x_1x_2$
Бориды Cr	$Y_7 = 7.825 - 2.542x_2 - 2.071x_1x_2$
Н _μ , ГПа	$Y_{M} = 11.7 + 0.09x_{3} + 0.16x_{1}x_{2} - 0.11x_{1}x_{3} + 0.24x_{2}x_{3} + 0.14x_{1}x_{2}x_{3}$

Из данной таблицы следует, что:

Количество пластичной составляющей γ - Fe в большей степени зависит от диаметра луча и повышается с увеличением диаметра луча и уменьшением взаимодействия скорости и диаметра луча.

Параметр Y₂ (количество боридов молибдена) возрастает с увеличением скорости движения луча лазера относительно детали и уменьшением диаметра луча лазера, причем влияние этих коэффициентов незначительно.

Прослеживается зависимость между количеством боридов железа (параметр Y₃) скоростью и коэффициентом перекрытия лазерных дорожек. С их увеличением количество боридов железа возрастает.

Количества карбида железа (параметр Y₅) увеличивается с уменьшением скорости движения луча лазера и диаметра луча лазера, а также увеличением коэффициента перекрытия. Максимальное влияние на количество карбидов железа оказывает скорость движения луча лазера.

Параметр Y₆ (количество карбидов Cr, V) увеличивается с уменьшением скорости движения луча лазера, увеличением диаметра луча лазера и коэффициента перекрытия лазерных дорожек. В данном случае максимальное влияние на количество карбидов оказывает диаметр луча лазера.

На рост количества молибдена (параметр Y₄) и боридов хрома (параметр Y₇) оказывает снижение диаметра луча и изменение скорости. В первом случае – скорость возрастает, во втором – убывает.

Параметр Y_м (микротвердость) увеличивается с ростом коэффициента перекрытия лазерных дорожек и взаимодействия скорости движения луча лазера с диаметром луча лазера, уменьшением взаимодействия скорости движения луча с коэффициентом перекрытия, увеличением взаимодействия диаметра луча с коэффициентом перекрытия лазерных дорожек и тройного взаимодействия скорости движения с диаметром луча и коэффициентом перекрытия лазерных дорожек. Максимальное влияние на микротвердость оказывает взаимодействия диаметра луча лазера с коэффициентом перекрытия лазерных дорожек.

 La 2. 5 publicitin	per peceni, nony termbre dan nonportan, ster apobatinoix Tab.
Фаза	Уравнения регрессии
Fe	$Y_1 = 15.217 - 2.792x_3 + 0.542x_1x_2x_3$
Бориды Та	$Y_2 = 7.225 + 0.646x_1 - 0.588x_2 - 1.838x_1x_2$
Бориды Fe	$Y_3 = 19.229 + 0.788x_1 - 3.038x_3 - 1.813x_1x_2 + 1.454x_1x_2x_3$
Ta	$Y_4 = 15.333 - 2.875x_3 + 0.467x_1x_2x_3$
Fe ₃ C	$Y_5 = 9.721 + 1.363x_2 + 1.221x_3 + 1.513x_2x_3$
Карбиды Cr, V	$Y_6 = 22.476 - 2.958x_1 - 1.358x_2 + 5.575x_1x_2$
Бориды Cr	$Y_7 = 14.9 - 1.5x_1 - 1.483x_2 + 0.067x_1x_2$
H _μ , ΓΠa	$Y_{M} = 11.1 + 0.44x_{1} - 0.19x_{3} + 0.163x_{1}x_{2} + 0.175x_{1}x_{3} + 0.34x_{2}x_{3}$

Таблица 2. Уравнения регрессии, полученные для покрытий, легированных ТаВ.

Анализируя данную таблицу получим:

Количество пластичной составляющей γ - Fe в большей степени зависит от коэффициента перекрытия лазерных дорожек и повышается с его уменьшением.

На рост параметра Y₂ (количество борида Ta) в равной степени оказывает влияние увеличение скорости движения луча лазера относительно детали, и уменьшение диаметра лазерного луча.

Количество боридов железа возрастает с ростом скорости луча лазера и уменьшением коэффициента перекрытия, который оказывает максимальное влияние на данный параметр.

Количество Та растет с уменьшением коэффициента перекрытия и увеличением тройного взаимодействия скорости движения с диаметром луча и коэффициентом перекрытия лазерных дорожек. Максимальное влияние на количество тантала оказывает коэффициент перекрытия лазерных дорожек.

Наблюдается прямая зависимость между количеством карбида железа диаметром луча и коэффициентом перекрытия лазерных дорожек. С их увеличением количество карбидов железа возрастает.

Фаза	Ипавиения петпессии
Fe	$Y_1 = 30.067 + 1.325x_1 - 1.133x_2$
Бориды Fe	$Y_3 = 26.05 - 2.317x_2$
Карбиды Fe	$Y_5 = 9.125 + 0.821x_1 + 0.041x_2$
Карбиды Cr, V	$Y_6 = 24.375 + 1.192x_1 + 4.875x_2 - 1.242x_1x_1$
Бориды Cr	$Y_7 = 10.108 - 1.223x_1 - 3.325x_2 + 0.758x_1x_2$
Н _µ , ГПа	$Y_{M} = 12.225 + 0.275x_{2} - 0.225x_{3} + 0.275x_{1}x_{3} + 0.225x_{1}x_{2}x_{3}$

Габлица 3 Уравнения регрессии, полученные для покрытий, легированны	хB	۵C
---	----	----

Количество карбидов и боридов хрома увеличивается в покрытии с TaB с уменьшением скорости обработки и диаметра луча, причем преобладающее влияние скорости луча наблюдается только в первом случае.

Параметр Y_м (микротвердость покрытия) увеличивается с ростом скорости луча и уменьшением коэффициента перекрытия лазерных дорожек. Максимальное влияние на микротвердость оказывает скорость луча лазера.

Рост скорости движения луча лазера относительно детали максимально влияет на пластическую составляющую γ - Fe (параметр Y₁), которая повышается с увеличением скорости и уменьшением диаметра луча.

С уменьшением диаметра луча лазера количество боридов железа (параметр Y₃) возрастает.

Наблюдается прямая зависимость между количеством карбидов железа (параметр Y₅), количеством карбидов хрома и ванадия (параметр Y₆) скоростью и диаметром луча. С их увеличением количество карбидов железа и хрома – возрастает. Максимальное влияние на количество карбидов хрома оказывает скорость движения луча, карбидов хрома – диаметр луча.

Параметр Y₇ (количество боридов хрома) возрастает с уменьшением скорости движения и диаметра луча лазера, который максимально влияет на данный параметр.

Параметр Y_м (микротвердость покрытия) возрастает с увеличением диаметра луча лазера и уменьшением коэффициента перекрытия. В данном случае максимальное влияние на микротвердость покрытия оказывает диаметр луча лазера.

Проанализировав все уравнения регрессии (для покрытий с обмазками с боридом молибдена, борида тантала и карбидом бора) наблюдалась одинаковая ситуация: лучше всего фазовый состав коррелирует с интенсивностью изнашивания по формуле:

$$\mathbf{Y} = \mathbf{A} + \mathbf{B} \cdot \mathbf{x}, \tag{4.3}$$

где х – один из параметров структуры, Y – параметр оптимизации, A и B – коэффициенты регресии, и была подтверждена с достаточно высокой достоверностью (0.9 – 0.95 %). Величины коэффициенттов регресии представлены в таблице 4.21.

износа 1 изн. при нагрузке / кг.										
Параметр	Величины к	Коэффициент								
Параметр	A	В	B2	корреляции						
	Для опыт	ов с боридом	молибдена							
$(Fe)Y_1$	нет	нет	нет	нет						
$(MoB)Y_2$	-0.428	0.0667	0.9423	0.5069						
(FeB)Y ₃	нет	нет	нет	нет						
(Mo)Y ₄	нет	нет	нет	нет						
$(Fe_3C) Y_5$	нет	нет	нет	нет						
$(CrC,VC)Y_6$	нет	нет	нет	нет						
(CrB)Y ₇	1.3613	0.0723	-1.5437	0.5618						
(упр. ф.)Ү ₈	нет	нет	нет	нет						
Үм	нет	нет	нет	нет						
Для опытов с боридом тантала										
$(Fe)Y_1$	1.5437	-0.0449	0.3781	0.7215						
(TaB)Y ₂	нет	нет	-нет	нет						
(FeB)Y ₃	нет	нет нет		нет						
(Ta)Y ₄	1.536	-0.044 0.3716		0.7253						
$(Fe_3C) Y_5$	0.4236	0.045 -0.4967		0.6054						
(CrC,VC) Y ₆	1.3878	0.0255 -		0.7435						
(CrB)Y ₇	нет	нет	нет	нет						
(упр. ф.)Ү ₈	нет	нет	нет нет							
Yм	-4.6714	0.4843	0.3716	0.615						
	Для оп	ытов с карбид	цом бора							
(Fe)Y ₁	нет	нет	нет	нет						
(FeB)Y ₃	нет	нет	нет	нет						
$(Fe_3C) Y_5$	нет	нет	нет	нет						
(CrC,VC) Y ₆	нет	нет	нет	нет						
(CrB)Y ₇	нет	нет	нет	нет						
(упр. ф.)Ү ₈	нет	нет	нет	нет						
Y _M	-1.904	0.1991	-0.4252	0.5565						

Таблица 4. Корреляция между параметрами структуры (Y₁ – Y_м) и величиной износа Y_{изн}. при нагрузке 7 кг.

Для первой серии экспериментов значимыми оказалось соотношение Y_{изн} / Y₂ и Y_{изн} / Y₇. Остальные корреляции оказались незначимыми.

Из этого следует, что на износ покрытий, легированных МоВ влияют бориды молибдена и бориды хрома.

Для второй серии экспериментов значимыми оказались соотношения:

Y_{изн} /Y₁, Y_{изн} /Y₄, Y_{изн} /Y₅, Y_{изн} /Y₆, Y_{изн} /Y_м

Из приведенных данных следует, что в покрытиях с добавками ТаВ наблюдается прямая зависимость между износом и количеством карбида хрома.

Для покрытий с карбидом бора все соотношения оказались незначимыми. Это говорит о более сложном механизме упрочнения, и за счет легированности матрицы и количества упрочняющей фазы.

Рассмотрим теперь влияние параметров лазерной обработки и легирования на количество упрочняющей фазы.

Анализируя состав покрытий оплавленных горелкой и лазером без легирования приходим к выводу, что наибольших значений в % по объему концентрация упрочняющей фазы достигается при оплавлении покрытий горелкой

Увеличение скорости перемещения луча от 50 до 300 мм/мин (Табл. 5) снижает количество пластичной составляющей, состоящей из а и у железа с 56.2 до 53.8 % и повышает концентрацию: боридов железа с 13.9 % до 16.2 %; карбидов железа с 7.1 до 7.7 %; карбидов хрома и ванадия – с 12.7 до 15.6 %; и боридов хрома – от 8.6 до 11.0 %.

n hasephore	Ullabatenna.							
		Оплавление лазером						
Фаза	оплавление	$V_1 = 50$	$V_2 = 100$	$V_4 = 200$	$V_5 = 300$			
	Торелкои	мм/мин	мм/мин	мм/мин	мм/мин			
Fe, Y ₁	27.6	56.2	55.7	54.8	53.8			
Бориды Fe, Y ₃	16.8	13.9	14.9	16.2	15.0			
Карбиды Fe, Y ₅	10.4	7.1	7.5	7.7	7.6			
Карбиды Cr, VC, Y ₆	27	12.7	14.5	15.7	15.6			
Бориды Cr, Y ₇	16.7	8.6	9.4	9.5	11.0			
Н _µ , ГПа, Ү _м	7.40	9.39	10.15	10.50	11.21			
Упрочняющая фаза	70.9	42.3	46.3	49.1	49.2			

Таблица 5. Фазовый состав плазменных покрытий после газопламенного и лазерного оплавления.

Микротвердость за счет увеличения твердой фазы повышается с 9.39 до 11.21 ГПа.

Данные результаты хорошо согласуются с предыдущими экспериментами показавшими, что скорость движения луча лазера относительно детали изменяет микроструктуру следующим образом: при $V_1 = 50$ мм/мин образуется в основном литая равновесная структура с осями дендритов первого, второго и третьего порядков. При повышении скорости $V_4 = 300$ мм/мин образуется пересыщенная боридная и карбидо-боридная структура. Мелкодисперсные боридные включения значительно повышают твердость, прочность и износостойкость железной матрицы.

				Количество вещества, % и микротвердость								
№ опы-	V, мм/	d,	r		Бо-		Бо-	Кар-	Кар-	Бори-	п	
та	мин	MM	L L	Fe	рид	Mo	риды	бид	биды	ды	Пµ, ΓПа	
					Mo		Fe	Fe	Cr, V	Cr	1114	
1	50	1	0.8	31.23	7.9	13.7	17.1	8.6	16.7	11.7	11.88	
2	150	1	0.8	26.196	8.0	8.6	16.0	7.6	17.9	7.6	11.90	
3	50	3	0.8	23.233	9.1	5.7	15.7	7.6	20.3	7.2	11.18	
4	150	3	0.8	27.301	6.4	10.0	19.0	7.8	18.5	14.2	11.44	
5	50	1	1.2	25.963	9.0	14.7	22.5	12.9	18.7	8.6	11.86	
6	150	1	1.2	24.625	9.2	11.6	17.3	8.1	17.2	12.6	11.08	
7	50	3	1.2	23.37	7.6	8.8	15.7	8.8	22.7	6.5	11.77	
8	150	3	1.2	25.73	8.7	8.3	21.7	7.2	19.4	3.2	11.6	

Таблица б.Состав фаз плазменных покрытий, легированных МоВ.

При легировании MoB за счет появления Mo 5.7 – 14.7% и боридов молибдена 7.9 – 9.1% количество пластичной составляющей, состоящей из α и γ железа уменьшилось с 53.8 – 56.2% и составила 23.37 – 26.196 %.

Лазерное легирование благоприятно влияет на упрочняющую фазу, повышая количество:

- боридов железа с 13.9 - 16.2 % в покрытиях без легирования до 15.7 до 22.5%;

- карбидов железа с 7.1 - 7.7 % до 7.2 - 12.9 % :

- карбидов хрома и ванадия соответственно с 12.7 - 15.6 % до 17.2 - 22.7 %;

- содержание боридов хрома повышается с 8.6 - 11.0 % по 7.6 - 14.2 %

– микротвердость за счет увеличения твердой фазы повышается с 9.39 – 11.21 ГПа до 11.06 – 11.9 ГПа.

Легирование TaB повлияло на количество пластичной составляющей, состоящей из α и γ железа, которая за счет появления в покрытии Ta 11.2 – 17 % и боридов тантала 3.2 – 10.3 % уменьшилась с 53.8 – 56.2% и составила 4.6 – 21.1 %.

Лазерное модифицирование привело к увеличению количества:

- боридов железа с 13.9 - 16.2 % в покрытиях без легирования до 14.7 - 26.5 %,

- карбидов железа с 7.1 до 7.7 % до 3.2 - 10.3 %;

- карбидов хрома и ванадия соответственно с 12.7 - 15.6 % до 5.0 - 33.3;

- содержание боридов хрома повыплается с 8.6 - 11.0 % до 14.2 - 33.3 %.

No					K	оличе	ство вещес	тва, % и	микрот	вердость	
опы- та	V, мм/ мин	d, мм	k	Fe	Бо- риды Та	Та	Бо- риды Fe	Кар- бид Fe	Кар- биды Cr, V	Бо- риды Сг	Н _μ , ГПа
1	50	1	0.8	10.1	7.3	18.5	18.7	9.8	9.4	26.0	11.38
2	150	1	0.8	4.6	3.2	19.7	26.5	7.8	5.0	33.3	11.74
3	50	3	0.8	6.0	3.2	18.0	25.0	7.5	5.7	34.3	10.53
4	150	3	0.8	20.0	9.6	17.0	19.3	8.3	9.2	16.6	11.36
5	50	1	1.2	11.5	5.6	12.8	14.7	6.7	33.3	15.5	10.10
6	150	1	1.2	17,0	10.3	12.6	17.6	10.7	16.3	15.4	10.95
7	50	3	1.2	21.1	7.0	11.2	15.0	13.1	18.1	14.6	10.54
8	150	3	1.2	14.9	5.8	13.0	17.3	5.8	24.0	14.2	12.08

Таблица 7. Состав фаз плазменных покрытий, легированных ТаВ

Микротвердость за счет увеличения твердой фазы повышается с 9.39 – 11.21 ГПа до 11.10 – 12.08 ГПа для покрытий, после лазерного легирования ТаВ.

		·····			A							
No	v			Количество вещества, % и микротвердость								
опи-	мм/	d,	k		Бори-	Кар-	Кар	Бори-	ц.,	Vun		
та	мин	ММ		Fe	ды	бид	биды	ды	Πμ, ΓΠο	упр. Фаза		
					Fe	Fe	Cr, V	Cr	111a			
1	50	1	0.8	27.3	29.5	11.5	23.3	8.4	12.23	72.7		
2	150	1	0.8	30.7	29.1	13.0	23.6	3.7	12.43	69.4		
3	50	3	0.8	34.4	27.1	8.5	21.9	8.1	13.13	65.6		
4	150	3	0.8	37.8	27.1	11.6	19.3	4.2	12.1	62.2		
5	50	1	1.2	30.6	28.6	8.4	25.8	6.3	11.36	69.1		
6	150	1	1.2	33.1	27.9	10.1	22.1	6.7	11.8	71.6		
7	50	3	1.2	28.3	22.3	9.0	26.3	14.0	11.86	70.7		
8	150	3	1.2	29.3	25.1	9.7	23.3	12.6	12.85			

Таблица 8. Состав фаз плазменных покрытий, легированных В4С.

При легировании B₄C количество пластичной составляющей, состоящей из α и γ железа уменьшилось с 53.8 – 56.2% в покрытиях без модифицирования, до 27.3 – 37.8 % в легированных.

Лазерное модифицирование влияет положительно на процентное содержания упрочняющей фазы повышая концентрацию: боридов железа с 13.9 – 16.2 % до 22.3 – 29.5 %; карбидов железа с 7.1 до 7.7 % до 8.4 – 13 %; карбидов хрома и ванадия соответственно с 12.7 – 15.6 % до 19.3 - 26.3 %; содержание боридов хрома с 8.6 – 11.0 % до 3.7 – 14.0 %.

Микротвердость за счет увеличения твердой фазы повышается с 9.39 – 11.21 ГПа до 11.36 - 12.86 ГПа.

Выводы.

1. Изучен фазовый состав и микротвердость покрытий, из самофлюсующегося порошкового материала ПР-Х4Г2Р4С2Ф легированных ТаВ, МоВ и В₄С, а также их интенсивность изнашивания. Получены уравнения регрессии, связывающие скорость движения, диаметр луча и коэффициента перекрытия с интенсивностью изнашивания и содержанием легирующих веществ в покрытии.

2. На снижение интенсивности изнашивания покрытий, легированных боридом молибдена и тантала оказывает влияние увеличение количества боридов молибдена и хрома в первом случае, карбида бора – во втором.

3. Для покрытий после легирования B₄C все соотношения между фазовым составов и интенсивностью изнашивания оказались незначимыми. Это говорит о том, что упрочнение происходит за счет сочетания легированности матрицы и количества упрочняющей фазы.

4. Установлено, что лазерная обработка увеличивает количество упрочняющей фазы и повышает микротвердость с 9.39 – 11.21 ГПа в покрытиях без легирования до 11.06-11.9 ГПа, легированных МоВ, до 11.10 – 12.08 ГПа в покрытиях, легированных ТаВ и 11.36-12.86 ГПа в покрытиях, после легирования В₄С.

ЛИТЕРАТУРА

1. Ларионов В. П., Болотина Н. П., Аргунова Т. В., Тюнин В. Д., Лебедев Н. П. Влияние лазерной обработки на структуру и состав плазменно-напыленных покрытий системы Ni-Cr-B-Si-C // ФХОМ. 1987. № 1. С. 74 – 78. 2. Спиридонова И. М. Структура и свойства железобороуглеродистых сплавов / Металловедение и термическая обработка металлов. 1984. № 2. С. 58 – 61. 3. Новик Ф.С. Математические методы планирования экспериментов в металловедении. Планирование промышленных экспериментов. - М., 1971. - 36 с. 4. Каледин Б.А. Планирование экспериментов в порошковой металлургии. Методическое пособие по курсу «Математическое планирование экспериментов» для студентов специальности «Порошковая металлургия, и слушателей факультета «Новые материалы» специальности 0414-«Методы создания композиционных материалов и изделий» Часть I Планы первого порядка. Минск: БПИ, 1982 - 61 с. 5. Каледин Б.А. Планирование экспериментов в порошковой металлургии. Методическое пособие по курсу «Математическое планирование экспериментов» для студентов специальности «Порошковая металлургия, и слушателей факультета «Новые материалы» специальности 0414 - «Методы создания композиционных материалов и изделий» Часть II Планы второго порядка. Минск: БПИ, 1982 - 61 с. 6. Самсонов Г. В. Тугоплавкие соединения. - М.: Металлургия. - 1963. - 398 с. 7. Вознесенский В.А. Статистические методы планирования эксперимента в технико-экономических исследованиях. М.: Финансы и статистика, 1981, - 264 с.

УДК 621.733.74

Савчик В.А., Дьяченко О.В., Василенко А.Г.

ИССЛЕДОВАНИЕ АДГЕЗИОННОЙ ПРОЧНОСТИ ПОРОШКОВ НА ЖЕЛЕЗНОЙ ОСНОВЕ

Белорусский национальный технический университет Минск, Беларусь

Прочность сцепления покрытия с основой определялась штифтовым методом, как наиболее распространенным. Однако этот метод имеет недостатки. Между оправкой и штифтом образуется зазор около 10 мкм, что может привести к склепыванию или свариванию, которое происходит при соударении высокоскоростных частиц и поверхности штифта. В случае большого зазора частицы могут проникать непосредственно в него. При испытаниях хрупких покрытий наряду с адтезионным отрывом на узких кольцевых участках, прилегающих к периметру штифта, происходит когезионный отрыв. Для устранения штифты выполняют в виде полых усеченных конусов, вставленных один в один и притертых друг к другу. Торцы конусов представляют собой концентрические кольца. Такая конструкция штифтов позволяет получить более однородный отрыв.

Поверхность под плазменно-напыленные покрытия готовили следующим образом: вначале ее обезжиривали этиловым спиртом, затем производили обдувку дробью. После дробеструйной обработки штифт проворачивали в приспособлении для устранения погрешности. Порошковый сплав напыляли на верхнюю поверхность образца.[1].