УДК 621.793.71

КОМПОЗИЦИОННЫЙ ПОРОШОК НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ, ЧАСТИЧНО СТАБИЛИЗИРОВАННЫЙ ОКСИДОМ ЦЕРИЯ

Докт. техн. наук, проф. ДЕВОЙНО О. Г., асп. ОКОВИТЫЙ В. В.

Белорусский национальный технический университет

Рабочая температура деталей и узлов газотурбинных двигателей (ГТД) последнее десятилетие характеризуется тенденцией роста (более 1150 °С), что, в свою очередь, позволяет повысить мощность установок и коэффициент полезного действия. В качестве материалов для керамического слоя теплозащитных покрытий (ТЗП) наибольшее применение в настоящее время получили композиции на основе диоксида циркония, частично стабилизированного оксидами редкоземельных металлов (ЧСЦД) [1-3]. Это обусловлено рядом его свойств: низким коэффициентом теплопроводности λ (0,6-1,3 Вт/(м⁻¹·K⁻¹) и сравнительно высоким коэффициентом линейного термического расширения α ((6–13) · 10⁻⁶ град⁻¹), соизмеримым с коэффициентами для жаропрочных сплавов на основе Ni и Co ((15–17) \cdot 10⁻⁶ град⁻¹), возможностью обеспечения высоких механических свойств упрочненной керамики. В частности, циркон и цирконаты щелочноземельных металлов имеют близкие с ЧСДЦ физические свойства, однако их применение ограничено недостаточно высокими механическими свойствами. Основным методом, используемым для нанесения теплозащитных покрытий из диоксида циркония, является плазменное напыление (до 90 % разработок) [1-3]. Положительные результаты получены также при использовании электронно-лучевого и ионно-плазменного напылений, магнетронного распыления.

Тем не менее преимущественное распространение плазменного напыления ТЗП сохраняется, прежде всего, вследствие его высокой производительности и универсальности, позволяющей наносить металлические и керамические материалы заданных химического и фазового составов. В общем случае ТЗП представляет собой многослойную систему, включающую металлический подслой, внешний керамический слой и переходные керамические слои [2-6]. Основной причиной разрушения плазменных ТЗП являются термомеханические напряжения, возникающие при теплосменах в двигателях вследствие рассогласования термического расширения металла основы и керамического слоя, а также неравномерности распределения температурного поля в покрытии. Термомеханические напряжения усугубляются действием остаточных напряжений, возникающих в покрытии при напылении, и ослабляются эффектами пластичности и ползучести, реализующимися в металлическом подслое.

Значительная структурная чувствительность свойств покрытий на основе диоксида циркония требует строгой воспроизводимости результатов. Это накладывает особо жесткие ограничения на качество используемых материалов и точность поддержания технологических режимов нанесения покрытия. Теплозащитное покрытие ZrO₂-Yb₂O₃ показало превосходные теплозащитные свойства при температурах до 1100 °С. Однако при более высоких температурах эти сплавы характеризуются относительно низкой к коррозионному стойкостью воздействию продуктов сгорания топлива и высокотемпературному окислению в условиях повышенных рабочих температур. Поэтому необходимо исследовать другие оксиды редкоземельных элементов, отличных от оксида итербия, для получения ТЗП, работающих при температурах более 1150 °C в условиях горячей коррозии или в присутствии солей ванадия. В ряду стабилизаторов CeO₂, HfO₂, Yb₂O₃, Y₂O₃ наиболее стабильными и долговечными являются СеО2-ЧСДЦ-покрытия при термоциклировании в условиях нагрева выше 1150 °С. Максимальное сопротивление термоусталости достигается при 22-24 % СеО₂. В случае формирования таких материалов спеканием оптимальное содержание стабилизатора в исходных порошках превышает концентрацию, которая требуется для фиксирования равновесной тетрагональной фазы ZrO₂, играющей наиболее важную роль при получении ТЗП с высоким сопротивлением термической усталости. Кроме того, теплозащитные покрытия ZrO₂-CeO₂ по сравнению с ТЗП на основе ZrO₂-Yb₂O₃ и ZrO₂-Y₂O₃ обладают повышенной температурной стабильностью, вязкостью разрушения и лучшей тепловой изоляцией.

Обоснование выбора процентного содержания оксида церия для стабилизации диоксида циркония при получении теплозащитных покрытий. На основании фазовой диаграммы состояния системы ZrO₂–CeO₂ (рис. 1) для получения в порошке максимального количества тетрагональной фазы отжиг порошка необходимо проводить при 1500-1700 °С в течение 8-10 ч с последующим охлаждением до 700 °С со скоростью 250-300 град./мин. Такой отжиг способствует удалению межкристаллитной влаги, трансформации моноклинной фазы в тетрагональную и стабилизации тетрагональной фазы. При отжиге в течение времени менее 8 ч и при температуре ниже 1500 °C происходит неполный переход моноклинной фазы в тетрагональную, а при отжиге в течение более 10 ч при температуре выше 1700 °С – рост и укрупнение кристаллов тетрагональной фазы диоксида циркония, что снижает их стабильность и приводит к распаду на моноклинную и кубическую фазы при охлаждении покрытий (табл. 1). Порошки с 12 % CeO₂, 30 % CeO₂ и 35 % СеО₂ в дальнейшем не исследовались, что связано с большим содержанием моноклинной и кубических фаз в исходном состоянии данных порошков (табл. 1). ТЗП на основании таких порошков имеют низкую термическую усталость. Охлаждение порошка после отжига до температуры 700 °С со скоростью 250-300 град./мин проводят с целью сохранения структуры и фазового состава порошков, получаемых при отжиге, что достигается быстрым, в течение 1,0–1,5 мин, прохождением температурного диапазона, в котором возможен обратный переход из тетрагональной в моноклинную фазу. При охлаждении со скоростью более чем 300 град./мин образуемое количество моноклинной фазы не уменьшается, а при охлаждении со скоростью менее 250 град./мин количество моноклинной фазы увеличивается, что снижает термическую усталость покрытий.

Рис. 1. Фазовая диаграмма состояния системы ZrO₂–CeO₂

Технология получения порошка диоксида циркония, частично стабилизированного оксидом церия. Получали порошки диоксида циркония, частично стабилизированного оксидом церия, следующих составов: ZrO₂ – 15 мас. % CeO₂; ZrO₂ – 20 мас. % CeO₂; ZrO₂ – 25 мас. % CeO₂. Химический состав полученных порошков приведен в табл. 2. Исходные материалы размером менее 5 мкм, взятые в весовых пропорциях, приведенных выше, загружали в фарфоровый барабан и перемешивали в течение 2 ч при скорости вращения 40 об/мин. Затем навески шихты в количестве 200 г с добавлением 8 % связующего компонента - спирта этилового марки А (ГОСТ 17299-78) - помещали в барабаны гранулятора марки 03-03-01. Гранулирование проводили в течение 2,2 ч со скоростью вращения барабанов 30 об/мин при угле наклона барабана 40° [7-9]. На рис. 2а представлена морфология частиц порошков после гранулирования. В табл. 3 приведен фракционный состав порошков ZrO2-CeO2 после гранулирования.

> Наука итехника, № 6, 2013 Science & Technique

Таблица 1

Соотор норонико		Содержание фазы, мас. %				
Состав порошка	Способ термообработки	моноклинной	тетрагональной	кубической		
ZrO ₂ – 12 мас % CeO ₂	Отжиг в течение 7 ч при температуре 1400 °C	48	52	_		
ZrO ₂ – 15 мас. % CeO ₂		36	64	_		
ZrO ₂ – 20 мас. % CeO ₂		32	68	_		
ZrO ₂ – 25 мас. % CeO ₂		24	67	9		
ZrO ₂ – 30 мас. % CeO ₂		20	69	11		
ZrO ₂ – 35 мас. % CeO ₂		18	65	17		
ZrO ₂ – 12 мас % CeO ₂	Отжиг в течение 8 ч при температуре 1500 °C	10	88	2		
ZrO ₂ – 15 мас. % CeO ₂		-	100	_		
ZrO ₂ – 20 мас. % CeO ₂		-	100	_		
ZrO ₂ – 25 мас. % CeO ₂		-	100	_		
ZrO ₂ – 30 мас. % CeO ₂		-	69	31		
ZrO ₂ – 35 мас. % CeO ₂		-	58	42		
ZrO ₂ – 12 мас % CeO ₂	Отжиг в течение 10 ч при температуре 1800 °C	58	48	4		
ZrO ₂ – 15 мас. % CeO ₂		46	46	8		
ZrO ₂ – 20 мас. % CeO ₂		30	59	11		
ZrO ₂ – 25 мас. % CeO ₂		20	57	23		
ZrO ₂ – 30 мас. % CeO ₂		12	54	31		
ZrO ₂ – 35 мас. % CeO ₂		9	44	47		

Фазовый состав порошка ZrO2-CeO2 после термообработки

Таблица 2

Состав порошка	Содержание элементов, мас. %							
	CaO	MgO	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	TiO ₂	CeO ₂	ZrO ₂
ZrO ₂ – 15 мас. % CeO ₂	0,27	0,08	0,73	0,29	0,06	0,04	15,35	Основа
ZrO ₂ – 20 мас. % CeO ₂	0,25	0,10	0,77	0,05	0,08	0,06	20,01	-
ZrO ₂ – 25 мас. % CeO ₂	0,22	0,12	0,68	0,03	0,04	0,03	24,99	_

Рис. 2. Морфология частиц порошка ZrO₂ - 22-24 % CeO₂ после операции: а - гранулирования (×300); б – спекания (×300); в – сфероидизации (×500)

Таблица 3

Фракционный состав порошков ZrO2-CeO2 после гранулирования

Способ гранулирования порошка	Процентное соотношение порошка при фракционном составе ZrO ₂ – 12 % Yb ₂ O ₃ после гранулирования, мкм						
	0–20	20-45	45-63	63-80	80-100		
ZrO ₂ – 15 мас. % CeO ₂	5	19	38	20	18		
$ZrO_2 - 20$ mac. % CeO_2	7	26	31	19	17		
$ZrO_2 - 25$ mac. % CeO ₂	3	46	36	10	5		

5

Наука ⊮техника, № 6, 2013 Science & Techniq

б

Затем полученные конгломераты помещали в алундовые лодочки, которые устанавливали в сушильном шкафу СНОЛ 3,5/300. Сушку связующего проводили при температуре 125 °C в течение 1,1 ч. Операция спекания проходила при 1300 °С в течение 6 ч (рис. 2б). Затем проводили дробление материала на шаровой мельнице МБЛ-1 с использованием в качестве размольных тел стальных шаров. Операцию рассева выполняли с применением воздушного классификатора для выделения фракции -(20 + 45) мкм (от 20 до 45 мкм). После рассева порошок фракцией от 20 до 45 мкм вводили в плазменную струю плазмотрона F4 («Плазма-Техник», Швейцария) мощностью 40 кВт. Порошок распылялся в струе и закалялся из расплавленного состояния в 4-11%-м водном растворе соляной кислоты при температуре раствора 70-100 °С в камере установки VPS (вакуумного напыления), заполненной аргоном при атмосферном давлении.

Морфология порошка ZrO₂ – 22–24 % CeO₂ после распыления (×500) показана на рис. 2в. Повышение равномерности распределения легирующего оксида в матрице из диоксида циркония после пропускания через плазму подтверждается результатами табл. 4 и рис. 3.

Порошок помещали в алундовые тигли марки ПД-КВПТ и проводили отжиг в печи фирмы «Набер» (ФРГ) в течение 8-10 ч при температуре 1500-1700 °С. После окончания операции отжига нагревательные элементы печи отключали и в рабочее пространство печи подавали аргон марки А комнатной температуры в количестве, обеспечивающем снижение температуры до 700 °C со скоростью от 250 до 300 град./мин. При достижении температуры 700 °С подачу газа прекращали, и охлаждение порошка дальше до комнатной температуры происходило вместе с печью. Из порошков каждого состава наносили покрытия на пять групп по пять образцов в каждой. Для получения сравнительных данных параллельно проводили нанесение покрытий из порошка, полученного по способу, описанному в прототипе. Нанесение покрытий выполняли на комплексе оборудования плазменного напыления покрытий фирмы «Плазма-Техник», включающем компьютерный пульт управления режимами нанесения покрытий, робот для перемещения

плазмотрона, стол для крепления напыляемых образцов. Покрытия наносили на торцевую поверхность дисковых образцов из сплава ЖС-32 диаметром 30 мм и толщиной 10 мм.

Таблица 4 Результаты микрорентгеноспектрального анализа порошка ZrO₂ – 22–24 % CeO₂

	Содержание элементов, %					
Точки	Ce	Zr	0	CeO ₂	ZrO ₂	
A2*	18,6	58,4	23,0	18,0	82,0	
A3*	19,3	64,0	26,7	20,2	79,8	
A4*	20,2	58,7	21,1	24,6	75,4	
A5	21,9	52,6	25,5	22,2	77,8	
A6	22,1	52,0	25,9	22,4	77,6	
* Ло пропускания порошка через плазменную струю.						

Рис. 3. Точки проведения микрорентгеноспектрального анализа порошка ZrO₂ − 22−24 % CeO₂: а – до пропускания через плазменную струю; б – после пропускания (×500)

Перед нанесением слоя керамического покрытия толщиной 0,3–0,4 мм наносили подслой толщиной 0,1 мм методом плазменного напыления в динамическом вакууме из порошка состава NiCrAlYb – для прототипа и NiCrAlCe – по предлагаемому способу. Слой керамического покрытия из частично стабилизированного диоксида циркония для прототипа и предлага-

> Наука итехника, № 6, 2013 Science & Technique

емого способа наносили при одинаковом режиме: напряжение дуги – 70 В, ток дуги – 550 А, дистанция напыления – 100 мм, расход аргона – 40 л/мин, расход водорода – 8 л/мин, расход порошка – 2 кг/ч, расход транспортирующего газа (аргона) – 8 л/мин. Фазовый состав порошков и покрытий определяли методом рентгеноструктурного анализа на рентгенографическом дифрактометре ДРОН-3, количественное содержание фаз – на сканирующем электронном микроскопе Nanolab-7.

Фазовый состав порошков частично стабилизированного диоксида циркония и плазменных покрытий из них приведен в табл. 5. После нанесения покрытия подвергали циклическому тестированию в печи при температуре 1170 °С, которую замеряли платиновой термопарой и поддерживали в пределах (1170 \pm 8) °С. Цикл состоял из нагрева в течение 10 мин, выдержки при 1170 °С в течение 60 мин и 60-минутном охлаждении при 300 °С. В течение

каждых 10 циклов образцы извлекали из печи для проверки, когда температура опускалась до 300 °C. Испытания продолжали до разрушения керамического покрытия, за которое принимали формирование трещины, видимой невооруженным глазом. Сравнительные данные испытаний покрытий, полученных по прототипу и предлагаемому способу, приведены в табл. 6.

Как видно из табл. 6, покрытия, полученные из порошков $ZrO_2 - 25$ мас. % CeO₂, изготовленных по технологии, разработанной авторами, выдерживают в 1,5 раза больше циклов нагрева-охлаждения, чем покрытие, полученное из порошка, изготовленного согласно прототипу. Таким образом, предложенный способ позволяет повысить стойкость покрытия к термоциклированию при температурах, превышающих 1150 °C, что приводит к более длительной защите подложки от воздействия высоких температур.

Таблица 5

Фазовый состав порошков частично стабилизированного диоксида циркония
и плазменных покрытий из них

Состав	Способ	Содержание фазы, мас. %				
материала	получения порошка	моноклинной	тетрагональной	кубической		
ZrO ₂ – 12 мас. % Yb ₂ O ₃	[6]	_/_	100,0/98,9*	-/1,1		
ZrO ₂ – 15 мас. % CeO ₂	Предлагаемый	—/2	100,0/94,0	—/4		
ZrO ₂ – 20 мас. % CeO ₂	-	—/2	100,0/96,0	—/2		
ZrO ₂ – 25 мас. % CeO ₂	-	_/_	100,0/98,9	-/1,1		
ZrO ₂ – 30 мас. % CeO ₂	_	_/_	69/53	31/47		
* Фазовый состав порошков и плазменных покрытий из них.						

Таблица б

Сравнительные данные испытаний покрытий

Состав материала	Способ получе-	(II		
	ния порошка	моноклинной	тетрагональной	кубической	число термоциклов
ZrO ₂ – 12 мас. % Yb ₂ O ₃	[6]	_/4	98,9/78,9*	1,1/17,1	620
ZrO ₂ – 15 мас. % CeO ₂		2/27	94/62	4/11	520
ZrO ₂ – 20 мас. % CeO ₂	The second second	2/6	96/90	2/4	860
ZrO ₂ – 25 мас. % CeO ₂	Предлагаемыи	-/6,1	98,9/93,9	1,1/-	936
ZrO ₂ – 30 мас. % CeO ₂		-/1,5	53,0/60,6	47/37,9	490
* Фазовый состав плазменн	ных покрытий до и п	осле термоцикл	ирования.		•

выводы

На основании проведенных исследований сделан вывод о том, что качественные теплозащитные покрытия необходимо формировать из материалов с равномерными химическим и фазовым составами по сечению исходных порошков, с максимальным количеством тетрагональной фазы и минимальным размером зерна фазовых включений, минимальным содержанием межкристаллитной влаги, со строго определенным размером и морфологией частиц исходного порошка.

Проведена оптимизация режимов получения материала на основе диоксида циркония, стабилизированного оксидом церия, для получения в порошке максимального содержания тетрагональной фазы. Покрытия, полученные из порошков ZrO₂ - 25 мас. % CeO₂, изготовленных по предлагаемому авторами способу, выдерживают в 1,5 раза больше циклов нагреваохлаждения, чем покрытие, полученное из порошка оксида циркония, стабилизированного оксидом иттербия. Предложенный способ позволяет повысить стойкость покрытия к термоциклированию при температурах, превышающих 1150 °C, что приводит к более длительной защите подложки от воздействий высоких температур.

ЛИТЕРАТУРА

1. Стернс, К. А. Теплозащитные покрытия / К. А. Стернс // Аэрокосмическая техника. – 1997. – № 10. – С. 144–164.

2. Ильющенко, А. Ф. Плазменные покрытия на основе керамических материалов / А. Ф. Ильющенко, В. А. Оковитый, А. И. Шевцов. – Минск: Беспринт, 2006. – 316 с.

3. **Phane, L.** Plasma-sprayed ceramic thermal barrier coatings for Turbine vane platforms / L. Phane // Thin Solid Films. – 1990. – P. 455–461.

4. Оковитый, В. А. Влияние технологических параметров керамического слоя теплозащитного покрытия на стойкость к термоциклированию / В. А. Оковитый // Порошковая металлургия. – 1998. – Вып. 21. – С. 101–105.

5. Способ получения керамических порошков: а. с. 1736119 СССР, МКИ⁴ С04 В35/48 / С. Б. Соболевский, А. А. Верстак, В. А. Оковитый; ГНУ «Ин-т порошковой металлургии». – № 4818348; заявл. 23.04.1990; опубл. 07.02.1991.

6. Способ получения копозиционного керамического материала: пат. № 13690 Респ. Беларусь МПК С04В 35/10 / В. А. Оковитый, Ф. И. Пантелеенко, О. Г. Девойно, А. Ф. Пантелеенко, В. В. Оковитый; заявитель и патентообладатель – БНТУ. – № а 20090464; заявл. 30.03.2009 // Бюл. – 2010. – № 5.

7. A. c. CCCP № 1316413, CO4B41/50, 1987.

8. Оковитый, В. А. Влияние технологических параметров керамического слоя теплозащитного покрытия на стойкость к термоциклированию / В. А. Оковитый // Порошковая металлургия. – 1998. – Вып. 21. – С. 101–105.

9. Способ получения керамического порошка: пат. № 13736 Респ. Беларусь, МПК С04В 35/48 / В. А. Оковитый, С. Б. Соболевский, Ф. И. Пантелеенко, А. И. Шевцов, В. В. Оковитый; заявитель – ГНУ «Ин-т порошковой металлургии». – № а 20090431; заявл. 24.03.2009; опубл. 30.10.10 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. – 2010. – № 4.

Поступила 21.01.2013

УДК 621.7

СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЕХНОЛОГИЙ БЫСТРОГО ПРОТОТИПИРОВАНИЯ В ПРОМЫШЛЕННОСТИ

(Часть 2)

Канд. техн. наук, доц. КОЛЕСНИКОВ Л. А.¹⁾, МАНЖУЛА Г. П.²⁾, докт. техн. наук, проф. ШЕЛЕГ В. К.¹⁾, канд. техн. наук, доц. ЯКИМОВИЧ А. М.¹⁾

> ¹⁾Белорусский национальный технический университет, ²⁾ЗАО «МСП Технолоджи Центр»

Примеры использования технологий быстрого прототипирования в промышленности. Если при изготовлении деталей посредством механообработки один универсальный инструмент (резец, фреза, сверло) позволяет получить множество разных деталей практически произ-

> Наука итехника, № 6, 2013 Science & Technique