падение происходит в местах наибольшего сдвига, по плоскостям скольжения, где происходит зарождение и движение дислокаций. Двигаясь в плоскости скольжения, дислокация встречает выделившиеся частицы и обволакивает их неподвижными дислокациями, в результате чего повышается сопротивление деформации, и металл упрочняется. Выделения и твердого раствора α-титана дисперсных фаз различных примесей происходит в довольно широком температурном интервале (20-400°C). Безусловно, этот процесс в значительной степени зависит от содержания примесей в твердом растворе, в частности от содержания таких элементов, как азот и углерод.

Электронномикроскопический анализ деформированного растяжением титана BT1-0 при комнатной температуре (рис. 1a), подтверждает протекание физико-химического процесса выделения фаз примесей из твердого раствора.

Повышение температуры до 100°С при растяжении титана ВТ1-0 стимулирует реакции динамического деформационного старения. Просмотр угольных реплик в электронном микроскопе показал, что наряду с большим количеством зерен свободных от частиц или имеющих весьма незначительное число частиц, имеются зерна, где концентрация частиц фаз примесей увеличилась. (рис. 16, 1в)

В случае деформации сжатием при комнатной температуре в структуре титана увеличивается количество двойников. Процесс двойникования в значительной степени зависит от схемы напряженного состояния. Наиболее благоприятной схемой образования двойников является сжатие. Именно для этой схемы напряженного состояния деформированная структура титана и ряда других металлов содержит набольшее число двойниковых образований.

Механизм двойникования у некоторых металлов может играть решающую роль в процессах пластического течения, влияя на сопротивление деформации, пластические, прочностные и усталостные свойства испытываемого металла.

ЛИТЕРАТУРА:

1.А.Х. Котрелл. Сб. Структура металлов и их свойства. М. 1984. 2. В.С. Иванова. Усталость и прочность металлических материалов. М. 1988. 3. А.Д. Кеннеди. Ползучесть и усталость в металлах. М., Металлуриздат, 1985.

УДК 539.3

Чигарева О.А., Беляцкая Л.Н.

ВОЛНОВАЯ ДИНАМИКА КРУГЛОЙ ПРИПОВЕРХНОСТНОЙ ТРЕЩИНЫ ПОД ВОЗДЕЙСТВИЕМ ВИБРАЦИИ

Минский автомобильный завод, Белорусский национальный технический университет Минск, Беларусь

Рассматривается поведение круглой в плане трещины, расположенной между поверхностным слоем и полупространством параллельно свободной поверхности. На свободной границе возбуждается гармоническая волна которая отражается от трещины и может быть зафиксирована на границе. В зависимости от соотношений между длинной (частотой) возбуждаемой волны, толщиной поверхностного слоя, радиуса трещины вычисляются напряжения, деформации, перемещения в отслоившемся материале.

Показано, что коэффициент интенсивности напряжений имеет экстримум в зависимости от соотношения между длиной волны и радиусом трещины.

Получена зависимость раскрытия трещины по длине радиуса. Полученные результаты могут быть использованы для решения задач обнаружения трещин отслоения покрытия от подложки, а также наличия трещины в однородном полупространстве.

Вопросы локации трещины в твердых телах на основе методов акустической эмиссии [1], акустических методов рассеяния волн [2] требуют решения задач построения полей перемещений, деформаций, напряжений, излученных или переизлученных трещиной (включением) при квази-

статических или динамических нагрузках. В случае, если локация осуществляется нестационарной волной в трехмерном случае приближенное решение задачи можно построить методами теории волн скачков напряжений [3]. В случае гармонических волн метод лучевых рядов позволяет построить решение для высоких частот [3]. Однако наиболее информативны акустические методы, когда волновая динамика включения, трещины исследуется в диапазоне резонансных взаимодействий [5].

1. Рассмотрим упругое однородное изотропное полупространство, характеризуемое объемным модулем К₂, сдвига μ₂, плотностью ρ₂. На полупространстве лежит упругий изотропный слой, толщины h, с модулями K₁, µ₁, плотностью р₁. Слой и полупространство жестко скреплены всюду, кроме области круглой трещины радиуса а. На свободной границе слоя возбуждается гармоническая волна, фронт которой распространяется параллельно свободной границе. На жестко скрепленной границе слоя и полупространства возникают отраженные и преломленные волны. Если детектор отраженных волн перемещать по свободной поверхности слоя вне круга радиуса а, являющегося проекцией трещины на свободную границу слоя, то он будет фиксировать один и тот же фон. Над трещиной детектор будет фиксировать поле, переизлученное трещиной.

Описанная выше схема представлена рис. 1

Как известно, в общем случае волновое поле в слое после отражения будет представлять собой суперпозицию падающей и отраженной волн, а после многократного переотражения – сумму падающий и отраженныхволн. Рассмотрим случай, когда волновое поле в слое состоит только из падающей и однократно отраженной волны. Для того, чтобы еще более упростить задачу рассмотрим только однократно отраженное поле в цилиндрической области радиуса а, основанием которой является верхняя поверхность трещины. Рассмотрение удобно провести в цилиндрической системе координат, расположенной согласно схемы на рис. 1.

15

Волновое поле, возбуждаемое в слое верхним берегом трещины удовлетворяет уравнению [6].

$$\mu^{(1)} \nabla^{1} \overline{U}^{(1)} + (\lambda^{(1)} + \mu^{(1)}) \text{grad div} \overline{U}^{(0)} = 0$$

$$\nabla^{2} \overline{U} = \overline{r} \frac{\partial}{\partial r} r \frac{\partial \overline{U}}{\partial r} + \frac{\partial \overline{U}}{\partial z^{2}} + \frac{1}{r^{2}} \frac{\partial \overline{U}}{\partial \theta^{2}}.$$
(1)

Соответственно нижняя часть трещины возбуждает в полупространстве волновое поле

$$\mu^{(2)} \nabla^2 \overline{U}^{(2)} + (\lambda^{(2)} + \mu^{(2)}) \text{grad div} \, \overline{U}^{(2)} = 0.$$
(2)

Граничные условия поставим на берегах трещины. Считаем, что при падении начальной волны, на трещину, напряжения, которые возникают на берегах равны

$$\overline{\Sigma}^{(1)} = \overline{\Sigma}^{(2)} = -\Sigma^{(0)} \text{ при } z = 0, \ 0 \le r < a.$$
 (3)

На границе слоя и полупространства

$$\overline{\Sigma}^{(1)} = \overline{\Sigma}^{(2)}$$
 при $z = 0, r > a.$ (4)

Здесь $\overline{\Sigma}^{(0)} = \{ \sigma_{r_z}^{(0)}(r, 0), \sigma_{a}^{(0)}(r, 0), \sigma_{z}^{(0)}(r, 0) \}^T$ напряжения в падающеий начальной

волне.

Как известно, согласно теореме Гельмгольца компоненты вектора перемещений $\overline{U}^{(\alpha)} = (U_{c}^{(\alpha)}, U_{\theta}^{(\alpha)}, U_{z}^{(\alpha)}), \alpha = 1,2,$ можно представить через потенциальные функции

$$U_{r}^{(\alpha)} = \frac{\partial \varphi^{(\alpha)}}{\partial r} + \frac{1}{r} \frac{\partial \psi^{(\alpha)}}{\partial \theta} + \frac{\partial^{2} \chi^{(\alpha)}}{\partial r \partial z},$$

$$U_{\theta}^{(\alpha)} = \frac{1}{r} \frac{\partial \varphi^{(\alpha)}}{\partial \theta} - \frac{\partial \psi^{(\alpha)}}{\partial r} + \frac{1}{r} \frac{\partial^{2} \chi^{(\alpha)}}{\partial \theta \partial z},$$

$$U_{z}^{(\alpha)} = \frac{\partial \varphi^{(\alpha)}}{\partial r} - \nabla^{2} \chi^{(\alpha)} + \frac{\partial^{2} \chi^{(\alpha)}}{\partial^{2} z}.$$
(5)

Подставляя (5) в (1), (2), получим волновые уранения для потенциальных функций

$$\nabla^{2} \varphi^{(\alpha)} + k_{i}^{(\alpha)2} \varphi^{(\alpha)} = 0, \quad k_{i}^{(\alpha)} = \omega \left(\rho^{(\alpha)} / \left(\lambda^{(\alpha)} + \mu^{(\alpha)} \right) \right)^{1/2},$$

$$\nabla^{2} \psi^{(\alpha)} + k_{i}^{(\alpha)2} \psi^{(\alpha)} = 0, \quad k_{i}^{(\alpha)} = \omega \left(\rho^{(\alpha)} / \mu^{(\alpha)} \right)^{1/2},$$

$$\nabla^{2} \chi^{(\alpha)} + k_{i}^{(\alpha)2} \chi^{(\alpha)} = 0.$$
(6)

Здесь $k_i^{(\alpha)}$, $k_i^{(\alpha)}$ – волновые числа продольной и поперечной волн соответственно. Полагая, что по угловой координате поля обладают периодичностью можно записать

$$\varphi^{(\alpha)} = \sum_{k=0}^{\infty} \Phi_k(r, z) e^{ik\theta}, \quad \psi^{(\alpha)} = \sum_{k=0}^{\infty} \psi_k(r, z) e^{ik\theta},$$

$$\chi^{(\alpha)} = \sum_{k=0}^{\infty} \chi_k^{(\alpha)}(r, z) e^{ik\theta}.$$
(7)

Подставляя (7) в (6), получим

$$\partial^{2} \Phi_{k}^{(\alpha)} + \frac{1}{r} \frac{\partial^{2} \Phi_{k}^{(\alpha)}}{\partial r} - \frac{k^{2} \Phi_{k}^{(\alpha)}}{r^{2}} + \frac{\partial^{2} \Phi_{k}^{(\alpha)}}{\partial z^{2}} + k_{e}^{(\alpha)2} \Phi_{k}^{(\alpha)} = 0,$$

$$\partial^{2} \psi_{k}^{(\alpha)} + \frac{1}{r} \frac{\partial^{2} \psi_{k}^{(\alpha)}}{\partial r} - \frac{k^{2} \psi_{k}^{(\alpha)}}{r^{2}} + \frac{\partial^{2} \psi_{k}^{(\alpha)}}{\partial z^{2}} + k_{e}^{(\alpha)2} \psi_{k}^{(\alpha)} = 0,$$

$$(8)$$

$$\frac{\partial^{2} \chi_{k}^{(\alpha)}}{\partial^{2} r} + \frac{1}{r} \frac{k^{2} \chi_{k}}{\partial r} - \frac{\partial^{2} \chi_{k}^{(\alpha)}}{r^{2}} + \frac{\partial^{2} \chi_{k}^{(\alpha)}}{\partial z^{2}} + (k_{e}^{(\alpha)}) \chi_{k}^{(\alpha)} = 0.$$

Применяя преобразование Ханкеля [7], считая трансформанту, имеющей первый порядок, можем получить выражения для $\Phi_{k}^{(\alpha)}, \psi_{k}^{(\alpha)}, \chi_{k}^{(\alpha)}$, подставляя которые в (7), находим

$$\begin{split} \varphi^{(\alpha)} &= \sum_{k=0}^{\infty} H_{k}^{-1} \left[\Delta_{1,k}^{(\alpha)}(\xi) e^{-iq_{e}^{(\alpha)}z} + \Delta_{2,k}^{(\alpha)}(\xi) e^{iq_{e}^{(\alpha)}z} \right] e^{ik\theta}, \\ \psi^{(\alpha)} &= \sum_{k=0}^{\infty} H_{k}^{-1} \left[\Delta_{3,k}^{(\alpha)}(\xi) e^{-iq_{i}^{(\alpha)}z} + \Delta_{4,k}^{(\alpha)}(\xi) e^{iq_{i}^{(\alpha)}z} \right] e^{ik\theta}, \\ \chi^{(\alpha)} &= \sum_{k=0}^{\infty} H_{k}^{-1} \left[\Delta_{5,k}^{(\alpha)}(\xi) e^{-iq_{i}^{(\alpha)}z} + \Delta_{6,k}^{(\alpha)}(\xi) e^{iq_{i}^{(\alpha)}z} \right] e^{ik\theta}, \\ q_{e}^{(\alpha)^{2}} &= k_{e}^{(\alpha)^{2}} - \xi^{2}, \quad q_{i}^{(\alpha)^{2}} = k_{i}^{(\alpha)^{2}} - \xi^{2}. \end{split}$$
(9)

Здесь функции $\Delta_{i,k}^{(\alpha)}$, (i = 1,...,6) находятся из граничных условий. Подставляя (9) в (5) получим компоненты вектора перемещений

$$U_{r}^{(\alpha)} = \sum_{k=0}^{\infty} \{H_{k}^{-1} [\xi(C_{1,k}^{(\alpha)} + C_{2,k}^{(\alpha)}) - iq_{1}^{(\alpha)}(C_{5,k}^{(\alpha)} - C_{6,k}^{(\alpha)})] - \frac{k}{r} H_{k}^{-1} [C_{1,k}^{(\alpha)} + C_{2,k}^{(\alpha)} - i(C_{3,k}^{(\alpha)} + C_{4,k}^{(\alpha)}) - iq_{1}^{(\alpha)}(C_{5,k}^{(\alpha)} - C_{6,k}^{(\alpha)})]\} e^{ik\theta},$$

$$U_{\theta}^{(\alpha)} = \sum_{k=0}^{\infty} \{-H_{k}^{-1} [C_{3,k}^{(\alpha)} + C_{4,k}^{(\alpha)}] + \frac{k}{r} H_{k}^{-1} [i(C_{1,k}^{(\alpha)} + C_{2,k}^{(\alpha)}) + C_{3,k}^{(\alpha)} + C_{4,k}^{(\alpha)} + q_{1}^{(\alpha)}(C_{5,k}^{(\alpha)} - C_{6,k}^{(\alpha)})]\} e^{ik\theta},$$

$$U_{z}^{(\alpha)} = \sum_{k=0}^{\infty} H_{k}^{-1} [-iq_{e}^{(\alpha)}(C_{1,k}^{(\alpha)} - C_{2,k}^{(\alpha)}) + \xi^{2} (C_{5,k}^{(\alpha)} + C_{6,k}^{(\alpha)})]\}.$$
(10)

Из закона Гука и (10), находим выражения для напряжений в виде

$$\sigma_{rz}^{(\alpha)} = \mu^{(\alpha)} \{ \sum_{k=0}^{\infty} H_{k-1}^{-1} [2iq_{e}^{(\alpha)} \xi(-C_{1,k}^{(\alpha)} + C_{2,k}^{(\alpha)}) + \xi \eta^{(\alpha)} (C_{5,k}^{(\alpha)} + C_{6,k}^{(\alpha)})] + \frac{k}{r} H_{k}^{-1} [2iq_{e}^{(\alpha)} (C_{1,k}^{(\alpha)} - C_{2,k}^{(\alpha)}) + iq_{r}^{(\alpha)} (C_{3,k}^{(\alpha)} - C_{4,k}^{(\alpha)}) - \eta^{(\alpha)} (C_{5,k}^{(\alpha)} + C_{6,k}^{(\alpha)})] \} e^{ik\theta},$$

$$\sigma_{dz}^{(\alpha)} = \mu^{(\alpha)} \{ \sum_{k=0}^{\infty} H_{k-1}^{-1} [iq_{r}^{(\alpha)} \xi(C_{3,k}^{(\alpha)} - C_{4,k}^{(\alpha)})] + \frac{k}{r} H_{k}^{-1} [2iq_{e}^{(\alpha)} (C_{1,k}^{(\alpha)} - C_{2,k}^{(\alpha)}) - iq_{r}^{(\alpha)} (C_{3,k}^{(\alpha)} - C_{4,k}^{(\alpha)}) + i\eta^{(\alpha)} (C_{5,k}^{(\alpha)} + C_{6,k}^{(\alpha)})] \} e^{ik\theta},$$

$$\sigma_{zz}^{(\alpha)} = \mu^{(\alpha)} \{ \sum_{k=0}^{\infty} H_{k}^{-1} [\eta^{(\alpha)} (C_{1,k}^{(\alpha)} + C_{2,k}^{(\alpha)}) + iq_{r}^{(\alpha)} \xi^{2} (-C_{5,k}^{(\alpha)} + C_{6,k}^{(\alpha)})] \} e^{ik\theta}.$$
(11)

Здесь
$$C_{i,k}^{(\alpha)}(\xi) = \Delta_{i,k}^{(\alpha)}(\xi)e^{(-1)iq_i^{(\alpha)}x}$$
, $i = 1,...,6$, $\eta^{(\alpha)} = 2\xi - (k_i^{(\alpha)})^2$

Подставляя (11) в условия (3), (4), получим интегральные уравнения для нахождения функций $\Delta_{i,t}^{(a)}(\xi)$. В общем случае получить решение не представляется возможным, однако некоторые упрощения можно получить используя асимптотические оценки при $\xi \to +\infty$, считая, что в силу изотрапии слоя и подложки отсутствует.

Зависимость от угла θ, при рассмотрении отраженного поля в слое считаем, что напряжения на свободной границе отсутствуют

$$\sigma_{rz}^{(2)} = \sigma_{\theta z}^{(2)} = \sigma_{zz}^{(2)} = 0 \text{ при } z = -h,$$
(12)

Рассмотрим оценки для коэффициентов концентрации напряжений, используя асимптотические оценки для напряжений при $r \rightarrow a$.

Коэффициенты напряжений К₁, К₁ в данном случае вводятся соотношением [8]

$$K_{I} + iK_{II} = \left(\sigma_{rr}^{(2)}(r, 0) + i\sigma_{rz}^{(2)}(r, 0)\right) \frac{\sqrt{r^{2} - a^{2}}}{(r^{2} - a^{2})^{r_{1}}(r^{2} + a^{2})^{r_{2}}}$$

$$\gamma_{1} = -i\xi, \ \gamma_{2} = i\xi, \ \xi = \frac{1}{2\pi} ln \frac{(1 + \beta)}{(1 - \beta)},$$

$$\beta = \frac{\mu^{(2)}(k^{2^{2}} - 1) - \mu^{(1)}(k^{1^{2}} - 1)}{\mu^{(2)}k^{1^{2}}(k^{2^{2}} - 1) + \mu^{(1)}k^{2^{2}}(k^{1^{2}} - 1)}.$$
(13)

Для напряжений получается оценка, которую запишем в виде

$$\sigma^{(2)}(r,0) = \left(\sigma_{zz}^{(2)}(r,0) \ \sigma_{rz}^{(2)}(r,0)\right) = -\frac{2rm_{i}\mu^{(2)}}{\sqrt{\pi}}\rho^{2} g^{N} g_{n=0}^{N} P_{n}(1)C_{n}$$

$$\rho = \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix}, \ \mathfrak{W} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \ w(r) = \begin{bmatrix} \theta & 0 \\ 0 & \theta \end{bmatrix}, \ \theta = \frac{(r-a)^{r_{1}}(r+a)^{r_{2}}}{\sqrt{r^{2}-a^{2}}},$$

$$g = \begin{bmatrix} \tau D_{1} & 0 \\ 0 & \tau^{-1}D_{2} \end{bmatrix}, \ \tau = \sqrt{\frac{1+\beta}{1-\beta}}, \ D_{i} = \frac{r(1+\gamma_{i})}{r(1/2+\gamma_{i})}, \ i = 1, 2.$$
(14)

На рис. 2 представлена зависимость K_1/K_1^s от $k_0 = k_1^{(1)}a$ при a/h = 0.5 - 1 кривая, a/h = 1 - 2 кривая, a/h = 2 - 3 кривая.

Оценка для величины раскрытия трещины также получается на основе асимптотических интегральных уравнений.

$$\begin{split} \delta \overline{U}_{0}(r_{0}) &= \delta \overline{U}(r_{0}) / \delta \overline{U}_{z}^{s}(0, 0), \quad r_{0} = r / a, \\ \delta \overline{U}(r_{0}) &= \begin{bmatrix} \delta \overline{U}_{r} \\ \delta \overline{U}_{z} \end{bmatrix} = \begin{bmatrix} U_{r}^{(2)}(r, 0) - U_{r}^{(1)}(r, 0) \\ U_{z}^{(2)}(r, 0) - U_{z}^{(1)}(r, 0) \end{bmatrix}, \\ \delta \overline{U}(r_{0}) &= \frac{2}{\pi r_{0}} \sum_{k=0}^{N} \int_{r_{0}}^{1} \theta(\zeta, r_{0}) \rho w(\zeta) \overline{P}_{n}(\zeta) d\zeta \quad o \pi \theta \quad r_{0} \leq 1. \end{split}$$
(15)
$$\theta(\zeta, r_{0}) &= \begin{bmatrix} -\zeta / \sqrt{\zeta^{2} - r_{0}^{2}} & 0 \\ 0 & r_{0} / \sqrt{\zeta^{2} - r_{0}^{2}} \end{bmatrix}.$$

Зависимость величины раскрытия трещины δU_r в зависимости от r_0 при 1) $k_0 = 0, 2$) $k_0 = 1, 3$) $k_0 = 2$; a/h = 1 представлена на рис. 3

____ × \

Выводы:

1) Из рис.2 следует, что зависимость коэффициента интенсивности напряжений имеет максимальное значение при длинах волн, кратких радиусу трещины.

2) Раскрытие трещины максимально в динамике ($k_0 = 1$), когда длина волны равна радиусу трещины, причем в этом случае она больше, чем в статическом случае ($k_0 = 0$).

3) Таким образом, наиболее надежна методика обнаружения трещины состоит в возбуждении волнового поля со спектром частот (длин волн) в области резонансных значений. Дифракционное взаимодействие волны с трещиной (включением) является сигналом о наличии трещин определенного масштаба.

ЛИТЕРАТУРА

1. Чигарев А.В., Юринок В.И. Оптимальное оценивание функции поврежденности материала по измерению АЭ «Акустическая эмиссия материалов и конструкций». – Ростов-на-Дону: сб. тер. докл. I Всесоюзная конференция, часть II, 1984. – с. 182-184. 2. Gubernatis J.E. Long-wave approximation for the scattering of elastic waves from flows with application to ellipsoidal voids and inclusions. J. Appl. Phys. v. 50, №6. – 1979, pp. 4046-4058. 3. Чигарев А.В. Распространение скачков напряжений акустической эмиссии в неоднородных средах. – Ростов-на-Дону: сб. тер. докл. I Всесоюзная конференция «Акустическая эмиссия материалов и конструкций», часть I, 1984. – с. 15-16. 4. Чигарев А.В. Распространение ударных волн в стохастически неоднородной упругой среде. Прикладная механика, т. 8. вып. 5, 1972 – с. 69-74. 5. Труэлл Р., Эльбаум Ч., Чик Б. ультразвуковые методы в физике твердого тела. М.: Мир, 1972. – 307с. 6. Лурье А.И. Теория упругости. М.: «Наука», 1970. – 939с. 7. Справочник по специальным функциям. М.: «Наука», 1979. – 832. 8. Астафьев Л.В. Нелинейная механика разрушения. «Самарский университет», 2001. – 631с.

УДК 539.3 519.6 519.5

Мелешко И.Н, Чигарев А.В.

ДЕФОРМАЦИЯ КРУГОВОЙ ПЛАСТИНЫ ПРИ НЕССИМЕТРИЧНЫХ ГРАНИЧНЫХ УСЛОВИЯХ

Белорусский национальный технический университет Минск, Беларусь

Прогиб пластины под действием нагрузки распределенной по контуру изучается во многих прикладных задачах теории упругих пластин [1]. Как правило рассматриваются нагрузки равномерно распределенные по контуру. В случае кинематических граничных условий зависимость перемещений и их производных от круговой координаты усложняет решение задачи.

В данной работе на основе точного решения предельной задачи в интегральном виде конструируется его приближенное представление логарифмами. Полученные в работе приближенные фор-

