1997

сентябрь-октябрь

УДК 52-64+535.36+539.125.523

Н. Н. РОГОВЦОВ

АНАЛИТИЧЕСКИЕ ВЫРАЖЕНИЯ ДЛЯ МОЩНОСТИ ИЗЛУЧЕНИЯ, ВЫХОДЯЩЕГО ИЗ ДИСПЕРСНЫХ СРЕД РАЗЛИЧНОЙ ФОРМЫ

(Представлено академиком П. А. Апанасевичем)

1. Одной из наиболее сложных проблем теории переноса является исследование полей излучения в рассеивающих (дисперсных) средах (объектах), имеющих сложную форму. К гаким объектам, в частности, относятся пылевые туманности, изолированные облака и разорванная облачность, факелы. Реальные успехи при решении различных аспектов указанной проблемы были достигнуты в основном с помощью метода статистического моделирования (метода Монте-Карло [1]), различных вариантов метода дискретных ординат [2] и подхода, базирующегося на использовании общих соотношений инвариантности (см. [3–10]). Однако сейчас только подход, предложенный в [3, 4, 10], дает возможность непосредственно выявлять в явном аналитическом виде закономерности многократного рассеяния света для достаточно широкого класса дисперсных сред сложной конфигурации. Кроме самостоятельного интереса результаты такого рода можно использовать также в качестве тестов для оценки качества численных методов и априорной информации при разработке модификаций метода Монте-Карло, широко применяемого при решении разнообразных проблем гидрооптики и оптики планетных атмосфер.

В сообщении получен ряд аналитических выражений для энергетических характеристик (их определения приведены ниже) излучения, играющих важную роль при исследовании процесса его переноса в геофизических и астрофизических объектах, облучаемых внешними или внутренними источниками. При этом ради упрощения рассматриваются только однородные дисперсные среды (они могут быть в свою очередь погружены в другие дисперсные среды), ограниченные невогнутыми поверхностями и содержащие изотропные внутренние источники излучения (в частности, таковыми являются звезды, расположенные внутри пылевых туманностей). В отличие от ранее выведенных в [5, 6, 9] результатов такого типа здесь впервые найдены в явном виде общие аналитические соотношения, позволяющие выполнить расчеты или провести оценки указанных характеристик для случая произ-

вольной индикатрисы рассеяния $x(\mu) \left(\frac{1}{2} \int_{-1}^{1} x(\mu) d\mu = 1 \right)$. Проведена также

их конкретизация для дисперсных сред, имеющих форму шара, бесконечного кругового цилиндра, сфероида, куба. Особое внимание уделено рассмотрению ситуации, когда рассеяние является почти консервативным (она реализуется, например, в атмосферах Земли, Венеры и планет-гигантов в видимом и коротковолновом участках непрерывного спектра).

2. Пусть V – однородная дисперсная среда, ограниченная невогнутой поверхностью S (считаем, что S не вносит изменений в проходящее через нее излучение). Обозначим через α , Λ соответственно показатель ослаб-

ления и альбедо однократного рассеяния. Допустим, что в V распределены изотропные внутренние источники излучения, описываемые функцией $g(\mathbf{r})$ (\mathbf{r} – радиус-вектор точки наблюдения). Символом V_{∞} обозначим бесконечную однородную дисперсную среду (она заполняет все пространство), которая имеет часть, полностью идентичную V (в ней расположены такие же источники излучения, как и в V). В качестве искомых энергетических характеристик возьмем следующие:

$$\Pi_{I}(S) = \iint_{S} dS' \int_{\Omega} (\mathbf{n}' \cdot \Omega') I_{V}(\mathbf{r}', \Omega') d\Omega', \qquad (1)$$

$$\Pi_2(S) = \iint_S dS' \int_{\Omega} (\mathbf{n}' \cdot \mathbf{\Omega}') I_{\infty}(\mathbf{r}', \mathbf{\Omega}') d\Omega'.$$
(2)

Здесь **n**' – единичная внешняя нормаль к S в точке, определенной радиусвектором **r**'; **Ω**' – единичный вектор, задающий направление распространения излучения; **Ω**₊ – полусфера, которая определяется условием (**n**' · **Ω**') > 0; **Ω** – единичная сфера, задающая множество всех направлений векторов **Ω**' в телесном угле 4π; $I_V(\mathbf{r}', \mathbf{\Omega}')$ и $I_\infty(\mathbf{r}', \mathbf{\Omega}')$ – соответственно интенсивности излучения в V и V_∞ ; $\Pi_1(S)$ – мощность излучения, выходящего через S за пределы среды V; $\Pi_2(S)$ – разность между мощностями излучения, выходящего и входящего в часть среды V_∞ , ограниченную поверхностью S (величины $\Pi_1(S)$ и $\Pi_2(S)$ соответствуют единичному спектральному интервалу, для краткости будем называть их далее светимостью и потоком).

Как показано в работах [5, 6, 9, 10], знание потока $\Pi_2(S)$ позволяет получать приближенные аналитические формулы, асимптотики, нижние и верхние оценки для $\Pi_1(S)$. Поэтому выпишем сначала выражения, которые дают возможность находить $\Pi_2(S)$. Используя общие соотношения инвариантности, приведенные в [3, 4], и закон сохранения энергии, можно вывести следующее выражение:

$$\Pi_2(S) = \frac{1-\Lambda}{\alpha^3} \iiint_{\bar{V}} g_1(\tau') d\bar{V}' \iiint_{\bar{V}_{\infty} \setminus \bar{V}} \tilde{G}_{\infty}(\tau',\tau) d\bar{V}.$$
(3)

Здесь $\tau = \alpha \mathbf{r}, \tau' = \alpha \mathbf{r}'; g_1(\tau') = g\left(\frac{\tau'}{\alpha}\right); \tilde{V}, \tilde{V}_{\infty}$ — образы тел V, V_{∞} при отображении $\mathbf{r} \to \tau; \ \bar{G}_{\infty}(\tau', \tau) = \bar{G}_{\infty}(|\tau' - \tau|) = \int_{\Omega} d\Omega' \int_{\Omega} \bar{G}_{\infty}(\tau, \Omega', \tau, \Omega) d\Omega$, где

 $\tilde{G}_{\infty}(\tau', \Omega', \tau, \Omega)$ — функция Грина безразмерного стационарного уравнения переноса излучения для бесконечной однородной среды, имеюшей те же оптические характеристики элементарного объема, что и V, и содержащей "источник" вида $\delta(\tau' - \tau)\delta(\Omega' - \Omega)$; символ \setminus в (3) обозначает операцию разности множеств. Если использовать метод отыскания функции $\tilde{G}_{\infty}(\tau)$ ($\tau \in (0, +\infty)$), предложенный в [10–12], то на основе (3) возможно найти поток $\Pi_2(S)$ для случая произвольной индикатрисы и любых внутренних изотропных источников, распределенных в V.

Ограничимся рассмотрением ситуации, когда внутри V находится точеч-

ный изотропный источник вида $g(\mathbf{r}) = (\alpha^3 / 4\pi)E_0\delta(\tau - \tau^*)$, где E_0 — мощность источника. Запишем (3) для данного случая. Для этого поместим начало безразмерной прямоугольной декартовой системы координат $O\bar{X}\bar{Y}\bar{Z}$ в точку, где находится источник (т.е. $\tau^* = \mathbf{0}$). Пусть $|\mathbf{OP}| = \bar{\rho}_s(\theta, \varphi)$ — оптическое расстояние от O до точки P, в которой пересекается с S луч, исходящий из начала координат в направлении, характеризуемом углами θ, φ в сферической системе координат, согласованной с $O\bar{X}\bar{Y}\bar{Z}$. С учетом сказанного выше соотношение (3) можно преобразовать к виду

$$\Pi_{2}(S) = (1 - \Lambda)(4\pi)^{-1} E_{0} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin \theta \left[\bar{\rho}_{s}(\theta, \phi) \bar{G}_{\infty}^{pl}(\bar{\rho}_{s}(\theta, \phi)) + \int_{\bar{\rho}_{s}(\theta, \phi)}^{+\infty} \bar{G}_{\infty}^{pl}(\rho) d\rho \right] d\theta.$$
(4)

Здесь $\tilde{G}_{\infty}^{pl}(\tau) = \int_{-1}^{1} d\mu' \int_{-1}^{1} \tilde{G}_{\infty}^{pl}(\tau,\mu',0,\mu) d\mu$ ($\tau > 0$), $\tilde{G}_{\infty}^{pl}(\tau,\mu',0,\mu) - функция Грина$

безразмерного уравнения переноса излучения для случая однородного бесконечного плоскопараллельного слоя, содержащего плоский мононаправленный источник $\delta(\tau)\delta(\mu'-\mu)$. Общие аналитические выражения для $\tilde{G}_{\infty}^{pl}(\tau,\mu',0,\mu)$ были найдены в работах [10–12]. Используя эти формулы и свойства преобразования Фурье, возможно представить $\tilde{G}_{\infty}^{pl}(\tau)$ в такой форме:

$$\bar{G}_{\infty}^{pl}(\tau) = E_1(\tau) + \frac{1}{2\pi} \int_{-\infty}^{\infty} (2\mathbf{D}_0(\omega^2) - A(\omega)) \exp(-i\omega\tau) d\omega,$$
(5)

где $\tau > 0$; $\mathbf{D}_{0}(\omega^{2}) = (c_{0}\mathbf{\Omega}_{0}(\omega^{2}))^{-1}$; $\mathbf{\Omega}_{0}(\omega^{2}) = \left[1; \frac{v_{0}\omega^{2}}{1}, \frac{v_{1}\omega^{2}}{1}, \ldots\right] -$ бесконечная сходящаяся цепная дробь; $v_{l} = (l+1)^{2}(c_{l}c_{l+1})^{-1}$, $c_{l} = (2l+1)(1 - \Lambda f_{l})$ (коэффициенты f_{l} определяются из разложения индикатрисы $x(\mu) = \sum_{l=0}^{+\infty} (2l+1)f_{l}P_{l}(\mu)$ по полиномам Лежандра $P_{l}(\mu)$); $E_{1}(\tau)$ – интегро-показательная функция; $A(\omega) = \int_{-1}^{1} (1 - i\omega\mu)^{-1}d\mu$ (явное выражение для $A(\omega)$ приведено в [12]). Второй улен в (5) является ограниченной величиной для $\forall \Lambda \in (0,1)$ и $\forall \tau \in [0,+\infty)$. Алгоритмы расчета $\mathbf{D}_{0}(\omega^{2})$ описаны в [10–12]. Формулу (5) удобно исполь-

зовать для получения асимптотик и численных значений $\bar{G}^{pl}_{\infty}(\tau)$ для случая произвольной индикатрисы $x(\mu)$.

Принимая во внимание условия нормировки [13] собственных функций приведенного характеристического уравнения теории переноса излучения (соответствующего нулевой азимутальной гармонике индикатрисы рассеяния), с помощью метода контурного интегрирования несложно формулу (5) привести к следующему виду:

$$\bar{G}_{\infty}^{pl}(\tau) = \frac{1}{c_0} \sum_{l=1}^{p_1} (k_l r_l)^{-1} \exp(-k_l \tau) + \Delta^{pl}(\tau), \ \tau > 0.$$
(6)

Здесь $k_1, k_2, \ldots, k_{p_1}$ — положительные корни указанного выше характеристического уравнения, записанные в порядке возрастания; p_1 — число дискретных корней, выбранных для рассмотрения; определение и алгоритм вычисления величин \mathbf{r}_l изложены в [11, 12]; функция $\Delta^{pl}(\tau)$ описывает "вклад" части дискретного и всего непрерывного спектра характеристического уравнения в $\tilde{G}_{\infty}^{pl}(\tau)$ ($\Delta^{pl}(\tau)$ можно рассчитать, используя (5), (6)). Выражение (6) можно использовать при отыскании асимптотик потоков для случая оптически толстых дисперсных сред.

3. Выпишем теперь ряд асимптотик для $\Pi_2(S)$, полученных на основе (4)-(6). Пусть $\tau_0(S)$ – минимальное оптическое расстояние от точечного изотропного источника до поверхности S. Из (4) с учетом (5), (6) можно вывести следующую асимптотику:

$$\Pi_{2}(S) = (4\pi)^{-1} E_{0} \left[\sum_{l=1}^{p_{1}} (k_{l} \mathbf{r}_{l})^{-1} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin \theta (\bar{\rho}_{s}(\theta, \phi) + k_{l}^{-1}) \exp(-k_{l} \bar{\rho}_{s}(\theta, \phi)) d\theta \right] + O(\kappa),$$
(7)

$$\tau_0(S) \rightarrow \infty$$
 или $\Lambda \rightarrow 1$

Величина к в (7) равна к = $(1 - \Lambda)E_0 \int_0^{2\pi} d\phi \int_0^{\pi} \sin \theta(\bar{\rho}_s(\theta, \phi) + k^{-1}) \exp(-k\bar{\rho}_s(\theta, \phi))d\theta$, причем в качестве k следует взять $k = k_{p_1+1}$ (если корней больше, чем p_1) или любое из чисел, лежащих на $(k_{p_1}, 1)$ (если имеется только p_1 корней). Заметим, что при значениях $\tau_0(S)$ порядка 10 (и более) с помощью подбора p_1 ($p_1 \ge 1$) нетрудно добиться того, чтобы отбрасывание остаточного члена в (7) не приводило к ощутимой погрешности при вычислении $\Pi_2(S)$. Ниже формула (7) конкретизирована для нескольких частных типов S.

а. Пусть S – сфера оптического радиуса т₀ (источник расположен в ее центре). Тогда (7) примет вид

$$\Pi_{2}(S) = E_{0} \sum_{l=1}^{p_{1}} (k_{l} \mathbf{r}_{l})^{-1} (\tau_{0} + k_{l}^{-1}) \exp(-k_{l} \tau_{0}) + O((1 - \Lambda) E_{0}(\tau_{0} + k^{-1}) \exp(-k \tau_{0})), (8)$$

 $\tau_0 \rightarrow \infty$ или $\Lambda \rightarrow l$.

b. Допустим, что S — "сжатый" эллипсоид вращения, оптические длины полуосей которого равны $\bar{a}, \bar{a}, \bar{c}$, причем $\bar{c} = \zeta \bar{a}$ (0 < ζ < 1). Тогда из (7) с помощью обобщенного метода Лапласа [14] получим асимптотику

$$\Pi_2(S) \sim (1 - \xi^2)^{-1} (k_1^2 \mathfrak{r}_1)^{-1} E_0 \exp(-k_1 \tilde{c}), \ k_1 \tilde{c} \to +\infty.$$
(9)

При выводе (9) предполагалось, что источник находится в центре симметрии эллипсоида.

с. Если *S* – "вытянутый" эллипсоид вращения с полуосями $\tilde{a}, \tilde{a}, \tilde{c}$ и $\tilde{c} = \xi \tilde{a}$ ($\xi > 1$), то аналогичным образом найдем (источник имеет такое же положение, как и в п. *b*) такую асимптотику:

$$\Pi_{2}(S) \sim \frac{\xi}{\sqrt{\xi^{2} - 1} k_{l} \mathbf{r}_{l}} \left(\frac{\pi \tilde{a}}{2k_{l}}\right)^{\frac{1}{2}} E_{0} \exp(-k_{l} \tilde{a}), \ k_{l} \tilde{a} \to +\infty.$$
(10)

d. Предположим, что S – граница кругового бесконечного цилиндра с оптическим радиусом \tilde{a} (источник находится на его оси симметрии). Тогда из (10) при $\xi \to +\infty$ получим

$$\Pi_2(S) \sim \frac{1}{k_{\rm l}\mathfrak{r}_{\rm l}} \left(\frac{\pi \tilde{a}}{2k_{\rm l}}\right)^{\frac{1}{2}} E_0 \exp(-k_{\rm l}\tilde{a}), \ k_{\rm l}\tilde{a} \to +\infty.$$
(11)

e. Расположим источник в точке пересечения диагоналей куба, ограниченного S и имеющего оптическую длину ребра, равную \tilde{d} . Тогда из (7) с помощью ряда преобразований можно найти следующую асимптотику:

$$\Pi_2(S) \sim 3(k_1^2 \mathbf{r}_1)^{-1} E_0 \exp(-2^{-1} k_1 \bar{d}), \ k_1 \bar{d} \to +\infty.$$
(12)

Соотношения (9)-(11) справедливы и тогда, когда $k_1 \rightarrow 0 \ (\Lambda \rightarrow 1)$.

4. Выражения для потока, приведенные выше, возможно непосредственно использовать при отыскании приближенных аналитических формул, асимптотик и двойных неравенств для светимости $\Pi_1(S)$. Для этого достаточно воспользоваться результатами работ [5, 6, 9, 10], в которых, в частности, выведен ряд соотношений для $\Pi_1(S)$, справедливых для изотропных и вытянутых вперед индикатрис рассеяния. Ниже на основе формул, выписанных в п. 3, получены асимптотики для $\Pi_1(S)$ для случая почти консервативно рассеивающей оптически толстой среды V, ограниченной гладкой поверхностью S, кривизна которой в любой точке стремится к нулю. В работах [9, 10] было показано, что для такой ситуации имеет место асимптотика $\Pi_1(S) \sim 2\Pi_2(S)$. Учитывая этот результат и свойства k_1 , \mathbf{t}_1 [10, 12, 15] при ((1 – Λ) / (3 – x_1)) $\rightarrow 0(x_1 = 3f_1)$, из формул (7)–(11) найдем такие асимптотики:

$$\Pi_{1}(S) \sim \frac{k_{1}E_{0}}{2\pi} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \bar{\rho}_{s}(\theta, \phi) \exp(-k_{1}\bar{\rho}_{s}(\theta, \phi)) \sin\theta d\theta, \quad k_{1}\tau_{0}(S) \to +\infty, \quad (13)$$

$$(V - \text{ Heborhytoe teno});$$

$$\Pi_1(S) \sim 2k_1 \tau_0 E_0 \exp(-k_1 \tau_0), \ k_1 \tau_0 \to +\infty,$$

$$(14)$$

$$(V - \operatorname{map});$$

$$\Pi_{1}(S) \sim 2(1-\zeta^{2})^{-1} E_{0} \exp(-k_{l}\bar{c}), \ k_{l}\bar{c} \to +\infty,$$
(15)
(V – "сжатый" сфероид);

$$\Pi_{1}(S) \sim \xi \left(\xi^{2} - 1\right)^{-\frac{1}{2}} E_{0}(2\pi \bar{a}k_{1})^{\frac{1}{2}} \exp(-k_{1}\bar{a}), \ k_{1}\bar{a} \to +\infty,$$
(16)
(V — "вытянутый" сфероид);

$$\begin{array}{l} \frac{1}{\prod_{l}(S) \sim (2\pi k_{l}\bar{a})^{\frac{1}{2}}E_{0}\exp(-k_{l}\tilde{a}), \ k_{l}\bar{a} \rightarrow +\infty, \\ (V - бесконечный круговой цилиндр). \end{array}$$
(17)

При получении (13)-(17) предполагалось, что источники расположены относительно границ соответствующих тел таким же образом, как описано в п. 3. К тому же при их выводе считалось, что $((1 - \Lambda) / (3 - x_1)) \rightarrow 0$. Формулы (13)-(17) справедливы для любых индикатрис рассеяния и описывают в явном аналитическом виде зависимости светимостей от оптических параметров тела V в целом и величины $k_1,$ значения которой определяются Λ и свойствами x(µ).

Summary

The analytical method for calculating radiation power emitted by homogeneous nonconcave dispersion media with isotropic internal sources is proposed. A number of asymptotic expressions for this quantity for the case of nearly conservatively scattering optically thick dispersion medium that occurs in the form of non-concave body, spheroid and infinite circular cylinder is obtained.

Литература

1. Михайлов Г. А. Оптимизация весовых методов Монте-Карло. М., 1987. 2 Басс Л. П., Волощенко А. М., Гермогенова Т. А. Методы дискретных ординат в задачах о переносе излучения. М., 1986. 3 Роговцов Н. Н.//Докл. АН БССР. 1981. Т. 25, № 5. С. 420-423. 4. Роговцов Н. Н.//ЖПС. 1981. Т. 35, № 6. С. 1044-1050.

5. Роговцов Н. Н.//Изв. АН СССР. ФАО. 1985. Т. 21, № 10. С. 1111—1112.

6. Роговцов Н. Н.//Докл. АН БССР. 1986. Т. 30, № 7. С. 609-612. 7. Роговцов Н. Н.//Астрофизика. 1988. Т. 29, № 3. С. 602-612.

Роговцов Н. Н.//Изв. АН СССР. ФАО. 1990. Т. 26, № 10. С. 1082–1088.
 Роговцов Н. Н.//Рассеяние и поглощение света в природных и искусственных

лисперсных средах. Мн., 1991. С. 58-81. 10. Роговцов Н. Н. Перенос излучения в рассенвающих поглощающих средах.

различной конфигурации: Дис. д-ра физ.-мат. наук. Мн., 1994.

11. Роговцов Н. Н., Боровик Ф. Н.//Докл. АН Беларуси. 1993. Т. 37, № 6. C. 39-44.

12. Боровик Ф. Н., Роговцов Н. Н.//Докл. АН Беларуси. 1994. Т. 38, № 4. С. 36-40. 13. Кейз К., Цвайфель П. Линейная теория переноса. М., 1972. 14. Олвер Ф. Асимптотика и специальные функции. М., 1990.

15. Минин И. Н. Теория переноса излучения в атмосферах планет. М., 1988.

Белорусская государственная политехническая академия

Поступило 03.05.97