Статическая балансировка в динамическом режиме выполняется на специальных станках, при этом в процессе вращения ротора регистрируется его дисбаланс [1].

Динамическая балансировка выполняется экспериментальным путем на специальных балансировочных станках [2]. Существует классификация станков по числу степеней свободы ротора (рис.7), а также по характеру режима работы и конструктивному исполнению, которые подразделяются на балансировочные станки дорезонансного, резонансного и зарезонансного типов [3].

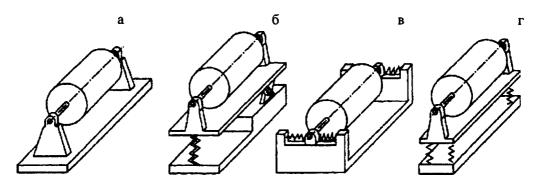


Рис. 7. Классификация станков по степеням свободы ротора

В заключении хотелось бы отметить, что в республике Беларусь технические ВУЗы не готовят инженеров по таким специальностям, поэтому в курсе ТММ необходимо больше внимания уделить вопросам динамической балансировки нормам допустимой остаточной неуравновешенности.

ЛИТЕРАТУРА

1. Теория механизмов и машин / К.В. Фролов [и др.]; под ред. К.В. Фролова. — 5-е изд. — М.: Высшая школа, 2005. — 496 с. 2. Вибрации в технике: Справочник в 6 т./К.В. Фролов; под ред. К.В. Фролова. — М.: Машиностроение, 1981. — т.б. — 456 с. 3. Балансировка вращающихся масс: учебно-методическое пособие к лабораторным работам по дисциплине «Теория механизмов, машин и манипуляторов» / П.П. Анципорович [и др.]. — Минск: БНТУ, 2009. — 27 с

УДК 621.01: 681.3 + 621.876

Астахов Э.И., Гарах В.А., Шкурко С.С.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СХЕМ ПРИВОДОВ МЕХАНИЗМОВ НОЖНИЧНЫХ ПОДЪЕМНИКОВ

Белорусский национальный технический университет, Минск, Беларусь

Для подъема и опускания крупных грузов в стесненных производственных и складских помещениях широко используются ножничные подъемники, содержащие шарнирно-рычажные антипараллелограммные механизмы, которые обеспечивают вертикальные перемещения грузовой площадки. Такие механизмы имеют от одной до шести секций антипараллелограммов, являющихся умножителями вертикальных перемещений первой нижней секции. Привод таких одно- и многосекционных механизмов ножничных подъемников осуществляется, чаще всего, одним или несколькими гидроцилиндрами по различным схемам расположения ведущих цилиндров. Ранее в работах [1, 2, 3] авторов рассмотрены вопросы структуры и кинематики, динамики подъема, силовой нагруженности таких шарнирных механизмов ножничных подъемников. Задачей данной работы является сравнительный анализ существующих и предлагаемых схем приводов ножничных подъемников.

Все выпускаемые ножничные подъемники содержат следующие обязательные узлы: одно- или многосекционный механизм 1 шарнирного антипараллелограмма, рабочая площадка

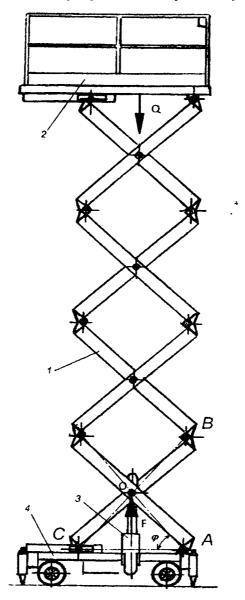


Рис. 1. Схема ножничного механизма с центральным вертикальным расположением привода

2с поднимаемым грузом Q, привод 3 ведущего звена, корпус (стойка) 4 (рис. 1). Чаще всего в качестве привода используют гидроцилиндры, приводящие в поступательное движение одно из подвижных звеньев шарнирного антипараллелограмма. Используемые схемы ведущих силовых цилиндров различаются схемой расположения и точкой приложения движущей силы. Покажем сравнительный анализ наиболее часто используемых схем приводов.

Одним из основных сравниваемых параметров приводов является максимальная сила F_{\max} на ведущем цилиндре для подъема заданного груза весом Q. Покажем сравнительный анализ величин F_{\max} при заданном Q, приняв в качестве обобщенной координаты угол φ_i поворота рычага 1. Используем равенство элементарных работ dA на площадке dA_{Π} и на ведущем 1-ом звене dA_i :

$$dA_{\Pi} = dA_{1} \tag{1}$$

В схеме на рисунке 1 сила F ведущего звена 1 приложена посредине вертикально в точке O , в которой $ds_1 = \frac{l_1}{2} \sin \varphi_1$.

Как получено в работе [2] величина элементарного перемещения dS_n на рабочей площадке n – ой секции антипараллелограмма будет равно:

$$dS_n = n \cdot dS_1 = nl \sin \varphi_1,$$

где l – длина рычага антипараллелограмма.

Тогда
$$Q \cdot dS_n = F_{\text{max}} dS_1$$

(без учета трения и кпд);

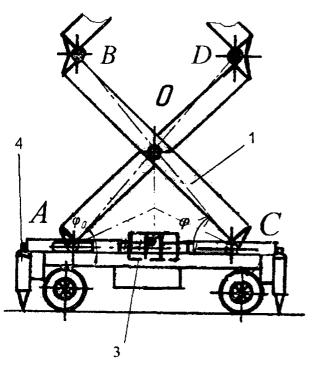


Рис. 2. Схема ножничного механизма с горизонтальным расположением привода

т.е.
$$Q \cdot n \cdot l \cdot \sin \varphi_1 = F_1 \cdot \frac{l}{2} \sin \varphi_1$$
; отсюда

$$F_{\text{max}} = 2nQ. \tag{2}$$

Таким образом, привод по схеме рис. 1 является линейным двойным умножителем как вертикальных перемещений, зависящих от длины l рычага, так и силовым умножителем, в зависимости от числа n секций антипараллелограммов.

В схеме на рисунке 2 силовой цилиндр расположен горизонтально между шарниром A и C 1-ой нижней секции, поэтому:

$$s_1 = l(\cos \varphi_0 - \cos \varphi_1)$$

где φ_0 — начальный угол положения рычага 1.

Максимальная сила будет в нижнем крайнем положении при $\varphi_{\rm l} \approx \varphi_{\rm 0}$.

$$F_{\text{max}} = \frac{Qn\sin\varphi_1}{\cos\varphi_0 - \cos\varphi_1}.$$
 (3)

Зависимость F_{\max} от обобщенной координаты φ_1 получается нелинейной, что приводит к резкому возрастанию силы при малых φ_1 (при $\varphi_1 \to 0, F_{\max} \to \infty$).

Коэффициент K_F возрастания максимальной силы $F_{\rm max}$ рассчитывается для данного случая в малом диапазоне $\Delta \varphi = 1^{\circ}$ изменения угла $\varphi_1 = \varphi_0 + \Delta \varphi$ по следующей формуле:

$$K_F = \frac{\sin \varphi_1}{\cos \varphi_0 - \cos(\varphi_0 + 1^\circ)}.$$
 (4)

Результаты расчётов коэффициента K_F в зависимости от начального угла φ_0 , который следует принимать не менее 1°, представлен в таблице 1.

Таблица 1 – Значения коэффициента K_F в зависимости от начального угла φ_0

φ_0	0.	ı.	3*	5°	7°	9°	14°	19°	29*	44°	60°
K_F	114,6	76,4	65,5	65,3	65,1	60,3	59,2	58,7	58,2	57,8	57,6

Как следует из таблицы 1 коэффициент возрастания максимальной силы K_F , с увеличением угла φ_0 от 0° до 45°, монотонно уменьшается от максимального значения $K_F=114,6$ до минимальной величины $K_F=57,6$ и при дальнейшем увеличении угла φ_0 коэффициент K_F становится примерно постоянным $\approx 57,5$.

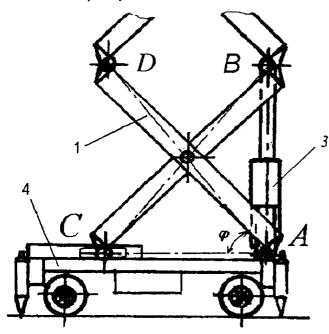


Рис. 3. Схема принимаемого ножничного механизма с боковым вертикальным приводом

В схеме на рисунке 3 сила F ведущего цилиндра приложена вертикально в точке B — крайней левой точке по линии AB. Тогда $ds_1 = l_1 \sin \varphi_1$ и из равенства элементарных работ получим:

$$F_{\text{max}} = Qn \tag{5}$$

Следовательно, привод по схеме на рисунке 3 является также линейным одинарным умножителем, увеличивая как перемещение, так и максимальную силу F_{max} в n раз по числу секций антипараллелограммов.

Таким образом, из приведенных схем привод на рисунке 3 обеспечивает наименьшую силу $F_{\rm max}$ ведущего цилиндра при заданной вертикальной нагрузке Q.

ЛИТЕРАТУРА

1. Астахов Э.И., Гарах В.А., Макаров А.Д. Моделирование динамики подъема площадки ножничного подъемника // Теоретическая и прикладная механика. — 2009. — Вып.24, с. 313 — 317. 2. Астахов Э.И., Гарах В.А. Особенности структуры и кинематики рычажного механизма ножничного подъемника // Машиностроение: Респ. сб. научн. трудов. Вып. 25. Мн.: БНТУ, 2009. — С. 24 — 27. 3. Гарах В.А., Астахов Э.И. Определение реакций и анализ нагруженности рычажного механизма ножничного подъемника // Машиностроение: Респ. сб. научн. трудов. Вып. 25. Мн.: БНТУ, 2009. — С. 21 — 24.