В проведенном исследовании не представляется возможным сделать однозначный вывод о связи параметров диффузионной зоны с типом соответствующей диаграммы состояния. Для обобщений подобного рода требуется проведение серии исследований различных бинарных систем. Структуры, наблюдаемые в биметаллических образцах исследуемых систем, находятся в соответствии с диаграммами состояния.

Теоретические исследования с применением методов математического моделирования позволяют сделать вывод о возможности выбора технологических режимов непрерывного литья, при которых соединение компонентов происходит в жидком состоянии без перемешивания.

Проведенные теоретические и экспериментальные исследования позволяют сделать вывод о принципиальной возможности получения качественных биметаллических слитков методом непрерывного литья.

ЛИТЕРАТУРА

1. Структура контактного слоя биметаллов, полученных соединением компонентов в жидком состоянии / Е.И. Марукович, А.Г. Анисович, В.В. Дозмаров, Ю.В. Мухин // Литейное производство. 1999. № 9. С. 12 – 15.

2. Марукович Е.И., Дозмаров В.В., Войтенко И.Г. Исследование зоны контакта биметаллов методом высокочастотного ультразвукового зондирования // Литье и металлургия. 1998. № 1. С. 24 – 26.

3. Марукович Е.И., Дозмаров В.В., Чешко Л.В. Математическое моделирование теплофизических процессов непрерывного горизонтального литья биметаллических заготовок // Сб. науч. тр. Металлургия и литейное производство. 1997. С. 62 – 65.

4. Марукович Е.И., Брановицкий А.М. Трехмерная тепловая модель процесса непрерывного литья прямоугольных биметаллических заготовок // Докл. НАН Беларуси. 2001. Т. 45. № 2. С. 127 – 132.

5. Чиркин В.С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1968. 484 с.

УДК 621.74.047

Е.Б. ДЕМЧЕНКО, канд. техн. наук, А.А. ОФЕНГЕНДЕН, канд. техн. наук (БНТУ)

ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПЕРЕДАЧИ ПРИ ВЕРТИКАЛЬНОМ ПОЛУНЕПРЕРЫВНОМ ЛИТЬЕ ЧУГУНА

Теплопередача в кристаллизаторе непрерывного литья – сложный термодинамический процесс, изменяющийся во времени и определяющий стабильность процесса литья. Для проведения расчетов кинетики затвердевания непрерывной отливки крайне важно знать значения удельного теплового потока q, отводимого в кристаллизаторе. В настоящей работе исследовали распределение теплового потока по высоте и толщине рабочей втулки кристаллизатора в зависимости от скорости литья w_n , температуры заливаемого металла t_{3an} и скорости течения воды w_B в кольцевом канале рубашки охлаждения с помощью термопар [1]. Термопары устанавливали в наиболее характерных зонах формирования отливки. В верхней зоне происходят значительные колебания уровня металла, теплообмен протекает в условиях контакта формирующейся начальной корочки отливки с поверхностью кристаллизатора. Средняя и нижняя зоны характеризуются наличием газового зазора между корочкой отливки и кристаллизатором, изменяющегося в зависимости от режима вытяжки отливки.

Исследования проводили при литье полой чугунной отливки (СЧ20) диаметром 104 мм в медный кристаллизатор с толщиной стенки 11 мм. Технологические параметры процесса литья изменяли в следующих пределах: $w_n = 0,0058...0,0108$ м/с, $t_{3an} = 1280...1340$ °C, $w_B = 1,1...3,6$ м/с. По усредненным значениям температур в каждом из трех поясов определяли значения удельного теплового потока q, используя методику, описанную в работе [2]:

$$q = \frac{\lambda \,\Delta t}{R_0 \,\ln\left(R_{x2} \,/\, R_{x1}\right)}$$

где λ – коэффициент теплопроводности; Δt – разность средних значений температур в точках R_{x1} и R_{x2} по толщине втулки; R_0 – радиус рабочей поверхности кристаллизатора.

Распределение $\tau = z / w_n$ теплового потока *q* по высоте кристаллизатора *z* часто описывается формулой [3, 4]

$$q = \frac{a}{\sqrt{1+b\tau}+c},\tag{1}$$

где a, b, c – константы, определяемые через промежуточные термические сопротивления тепловому потоку системы отливка – кристаллизатор – охлаждающая среда. Учет этих величин весьма затруднителен, поэтому в формуле (1) использовали не мгновенные значения теплового потока q, а усредненные в интервале времени τ , что отмечается в работе [4].

Имеется другой путь определения констант аппроксимации непосредственно – по данным температурных измерений с помощью метода наименьших квадратов [5]. Поскольку уравнение (1) не допускает непосредственного применения метода наименьших констант, то, разложив квадратный корень в ряд Тейлора и удерживая члены не выше первого порядка, его преобразовали к виду

$$q = q_0 / (1 + \beta \tau), \tag{2}$$

где q_0 — начальный удельный тепловой поток на уровне мениска расплава; β — коэффициент, характеризующий степень снижения q с увеличением τ .

Очевидно, что величины q_0 и β должны зависеть от $t_{3a_{\pi}}$ и w_{B} . Эти зависимости оценивали по формулам:

$$q_0 = a_0 + a_1 t_{3a_1} + a_2 w_{\rm B} ; (3)$$

$$\beta = b_0 + b_1 t_{3a\pi} + b_2 w_{\rm B}, \qquad (4)$$

где a_i , b_i (i = 0, ..., 2) – константы аппроксимации.

Для определения констант аппроксимации по данным измерения теплового потока во времени уравнения (2) – (4) преобразовали к следующему виду:

$$1 = \frac{1}{q}a_0 + \frac{t_{3a\pi}}{q}a_1 + \frac{w_B}{q}a_2 - \tau b_0 + \tau t_{3a\pi}b_1 + \tau w_Bb_2.$$
 (5)

Использовав результаты экспериментов, получили значения констант аппроксимации: $a_0 = -4,5871$; $a_1 = 4,984 \cdot 10^{-3}$; $a_2 = 0,2195$; $b_0 = -0,3470$; $b_1 = 3,304 \cdot 10^{-4}$; $b_2 = 6,88 \cdot 10^{-4}$.

Результаты расчетов теплового потока по уравнениям (2) – (5) представлены в табл. 1.

На рис. 1 представлены зависимости удельного теплового потока q₀ и коэффициента β от температуры заливаемого металла и скорости течения охлаждающей воды.

Рис. 1. Зависимости удельного теплового потока $q_0(a)$ и коэффициента $\beta(b)$ от температуры заливаемого металла t_{3an} и скорости течения охлаждающей воды w_a : $-\langle - w_a = 1, 1 \text{ м/с}; -\Box - w_a = 2, 2 \text{ м/с}; -\Delta - w_a = 3, 6 \text{ м/с}$

Расчетные значения удельного теплового потока

Номер	Параметры литья				Расчетные значения		
экспе- римента	w _л , м/с	<i>t</i> _{1ал} , °С	w _в , м∕с	τ, c	<i>q</i> э, Мвт/м ²	$\frac{q_0, \text{ MBt/m}^2}{\beta, c^{-1}}$	<i>q</i> _p , МВт/м ²
1	0,0093	1320	3,0	2,14	2,42	<u>2,650</u> 0,091062	2,22
				8,57	1,32		1,49
				14,46	1,21		1,14
2	0,0093	1320	1,1	2,14	2,10	<u>2,233</u> 0,089755	1,87
				8,57	1,11		1,26
				14,46	1,03		0,97
3	0,0075	1280	2,2	2,67	2,05	<u>2,275</u> 0,077296	1,89
				10,67	1,12		1,25
				18,00	1,01		0,95
4	0,0093	1320	2,2	2,14	2,31	2,475 0,090512	2,07
				8,57	1,27		1,39
				14,46	1,15		1,07
5	0,0093	1280	2,2	2,14	2,18	<u>2,275</u> 0,077296	1,95
				8,57	1,16		1,37
				14,46	1,03		1,07
6	0,0108	1280	2,2	1,85	2,34	<u>2,275</u> 0,077296	1,99
				7,38	1,33		1,45
				12,46	1,20		1,16
7	0,0093	1340	2,2	2,14	2,40	<u>2,574</u> 0,097119	2,13
				8,57	1,37		1,40
				14,46	1,24		1,07
8	0,0058	1280	2,2	3,43	1,79	<u>2.275</u> 0,077296	1,80
				13,71	0,97		1,10
				23,14	0,85		0,82
9	0,0093	1320	3,6	2,14	2,44	<u>2,782</u> 0,091475	2,33
				8,57	1,36		1,56
				14,46	1,00		1,20

Для оценки адекватности расчета по данным эксперимента определили дисперсию ошибки опытов S_y^2 , для чего пятикратно повторили режим литья № 9. Результаты статистических расчетов, выполненных по методике, описанной в работе [6], приведены в табл. 2. Из полученных результатов следует, что предложенная аппроксимация адекватна эксперименту.

Видно, что при скорости течения охлаждающей воды до 2,2 м/с ее влияние на величину удельного теплового потока соизмеримо с влиянием

Номер эксперимента	Характеристика	Обозначение	Единица	Числовое значение
1	Дисперсия ошибок опытов	S_y^2	(MBт/м²)²	0,0141
2	Степень свободы дисперсии	f _B	-	12
3	Дисперсия адекват- ности	S^2_{ad}	(MBt/m ²) ²	0,0346
4	Степень свободы дисперсии	$f_{ m ad}$	-	21
5	Расчетное значение критерия Фишера	Fp	-	2,4556
6	Табличное значение критерия Фишера	$F_{\rm T}$ (0,05; $f_{\rm ad}; f_{\rm B}$)	-	2,53
7	Табличное значение критерия Стьюдента	$t(0,05; f_{\rm B})$	-	2,179
8	Доверительный ин- тервал	Δq	MBt/m ²	0,259

Статистическая оценка результатов эксперимента

температуры заливаемого металла. При скорости течения охлаждающей воды более 2,2 м/с ее влияние меньше влияния температуры заливаемого металла. Последнее объясняется тем, что тепловой поток прямо пропорционален температурному напору, а от скорости протекания охлаждающей воды при ее однофазном турбулентном течении зависит только в степени 0,8.

Более сложный характер влияния скорости течения охлаждающей воды при малых скоростях объясняется тем, что теплоотдача осуществляется в режиме двухфазного течения охладителя (кипение с недогревом).

Анализ уравнений (2) – (5) показал, что различие в значениях теплового потока q при разных скоростях протекания охлаждающей воды и температурах заливаемого металла в исследованных диапазонах наблюдается только до $\tau = 10$ с. Это объясняется влиянием термического сопротивления газового зазора между коркой отливки и кристаллизатором. При $\tau >$ > 10 с величина теплового потока q практически не зависит от $w_{\rm B}$ и $t_{\rm заn}$.

Выведенные зависимости $q = f(\tau, w_{\rm B}, t_{\rm зал})$ могут быть использованы при расчете кинетики затвердевания отливки при непрерывном литье металлов и сплавов.

ЛИТЕРАТУРА

 Влияние технологических параметров на процесс теплопередачи в кристаллизаторе при вертикальном непрерывном литье чугуна / Е.Б. Демченко, А.А. Офенгенден, В.И. Тутов, В.А. Гринберг // Повышение качества непрерывнолитых заготовок и эффективность процесса. Могилевское отд-ние МО ФТИ АН БССР. 1990. С. 51 – 52. 2. Михеев М.А., Михеева И.М. Основы теплопередачи. М.: Энергия, 1977. 344 с.

3. Luis D., Sawage G. Теория теплопередачи и образования воздушного зазора в кристаллизаторах непрерывного литья // Airons instituts. 1962. Вып. 200. № 1. С. 41 – 47.

4. Акименко А.Д. К вопросу об изменении теплового потока по длине кристаллизатора // Изв. вузов. Черная металлургия. 1967. № 2. С. 45 – 48.

5. Касандрова О.Н., Лебедев В.В. Обработка результатов наблюдений. М.: Наука, 1970. 104 с.

6. Хартман К., Лецкий Э., Шеффер В. Планирование эксперимента в исследовании технологических процессов. М.: Мир, 1977. 552 с.

УДК 621.74.047.

Е.Б. ДЕМЧЕНКО, канд. техн. наук, <mark>В.И. ТУТОВ</mark>, д-р техн. наук, В.А. ГРИНБЕРГ, канд. техн. наук (БНТУ)

РАСЧЕТ ПРОЦЕССА ЗАТВЕРДЕВАНИЯ ПОЛОЙ ЦИЛИНДРИЧЕСКОЙ ОТЛИВКИ ПРИ ВЕРТИКАЛЬНОМ НЕПРЕРЫВНОМ ЛИТЬЕ

При математическом моделировании процесса затвердевания отливки необходимо определить коэффициент теплоотдачи от жидкого металла к твердой корке α_{*} [1, 2]. В общем виде, с учетом гидродинамики расплава, теплового баланса жидкой фазы и нелинейности граничных условий, такая задача может быть решена только численными методами с помощью критериальных уравнений и полученных в результате моделирования данных по скоростям перемещения расплава у фронта затвердевания. При конкретизации поставленной задачи определение α_{*} не представляется возможным ввиду отсутствия достоверных сведений о характере теплообмена на границе расплава – твердая корка.

Не менее трудная задача решается при определении суммарного коэффициента теплопередачи от твердой корки к охлаждающей среде α [3]. Его определяют с учетом термических сопротивлений газовых зазоров, возникающих между различными элементами системы (например, между коркой и кристаллизатором) и изменяющихся в процессе литья в зависимости от параметров процесса, усадки отливки и других факторов. Все это снижает точность конечных результатов расчета.

Поэтому в математической модели расчета вместо значений коэффициентов теплопередачи целесообразнее использовать значения удельного теплового потока q, отводимого с поверхности отливки к охлаждающей среде и определяемого путем экспериментального исследования температурного режима рабочей втулки кристаллизатора (тем более, что q все равно необходимо определять для расчета α). Такие результаты более на-