ЛИТЕРАТУРА

- 1. Войтович, Р.Ф. Окисление тугоплавких соединений / Р.Ф. Войтович, Э.А. Пугач. М.: Металлургия, 1978. 112 с.
- 2. Самсонов, Г.В. Тугоплавкие соединения /Г.В. Самсонов, И.М. Виницкий. М.: Металлургия, 1976. 560 с.
- 3. Свойства, получение и применение тугоплавких соединений / под ред. Т.Я. Косолаповой. М.: Металлургия, 1986, 928 с.
- 4. Вознесенский, В.А. Статистические методы планирования эксперимента в технико-экономических исследованиях / В.А. Вознесенский. М.: Статистика, 1974. 192 с.

УДК 621.762:669.017

Г.Г. ГОРАНСКИЙ, канд. техн. наук, Б.А. КАЛЕДИН, канд. техн. наук (БНТУ)

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ МЕХАНОСИНТЕЗА АМОРФНЫХ ПОРОШКОВ НА ОСНОВЕ ЖЕЛЕЗА

Механические и триботехнические свойства износостойких покрытий из сплавов на основе железа могут быть улучшены формированием в покрытии макрообъемов с аморфной и наноразмерной структурой. Одним из рациональных вариантов создания подобных покрытий может быть использование в качестве наносимого материала аморфных порошков на основе системы Fe-Ni-Cr-B-Si-Mo-Co, полученных в результате механосинтеза и диспергирования в аттритторе [1], в сочетании с их высокоскоростным газопламенным напылением [2].

Целью данной работы было обоснование возможности сохранения порошком метастабильной аморфной составляющей при его температурной обработке. Это оценивается по величине параметров перекристаллизации при отжиге аморфных сплавов указанной системы [1, 2]. Обладая подобной информацией, можно прогнозировать допустимую интенсивность и длительность температурного воздействия на материал в процессе его газопламенного напыления с частичным сохранением аморфной составляющей или ее полной перекристаллизацией [1, 2].

Температурная стабильность аморфных порошковых композиций обусловлена методом их получения, длительностью и режимами предварительной обработки порошков [1-3]. В данной работе рассматриваются два варианта получения аморфного порошка: закалка из расплава и механосинтез с последующим диспергированием в аттритторе и без диспергирования.

Механический синтез порошка аморфного сплава Fe-Ni-Cr-B-Si-Mo-Co и его диспергирование осуществлялись в аттритторе с вертикальной осью вращения импеллера при энергонапряженности I=1,4 Вт/г. В качестве определяющего параметра процессов ат-

тритторной обработки (AO) была принята величина механической энергии E_D , прошедшей через материал за время τ ($E_D = I\tau$) [1-3].

Механосинтез проводился в течение 12 ч до достижения материалом уровня аморфизации не менее Co=85% при прохождении через порошковую шихту энергии деформации $E_D=52,...54,2$ кДж/г. Дальнейшая AO и отжиг образцов проводились как для этого материала, так и (с целью сравнения) для сплава того же состава, полученного закалкой расплава при скорости охлаждения $\Delta E/\Delta \tau = 4\cdot 10^5$ К/с.

Идентификация отдельных кристаллических фаз, а также момент их зарождения при отжиге аморфного сплава определялись методом рентгенофазового анализа на дифрактометре «Дрон-3» в монохроматизированном Со $K\alpha$ -излучении [1-3]. Методика оценки параметров перекристаллизации и степени деформационного воздействия на материал также полностью соответствовала ранее используемым авторами методикам работ [1-3].

Поскольку микротвердость H_{μ} аморфного сплава после AO, а также кинетика и параметры его последующей перекристаллизации при нагреве (энергия активации процесса $E_{\rm a}$, кДж/моль; температура перекристаллизации T_V , K; интенсивность экзотермического эффекта ΔT , K; показатель Джонсона – Мела – Аврами n) являются функцией энергии деформационного воздействия на процессе АО [1-3], материал E_D В c целью определяющих факторов предварительной обработки материала осуществлено статистическое моделирование механосинтеза аморфной порошковой композиции последующей АО. В качестве контролируемых функциональных параметров оптимизации были приняты вышеперечисленные величины H_{ii} (Y_1) , E_a (Y_2) , n (Y_3) , ΔT (Y_4) , T_V (Y_5) , а в качестве управляемых внешних факторов - способ подготовки порошкового материала: закалка при скорости охлаждения $\Delta T/\Delta \tau =$ $=4\cdot10^5\,{
m K/c}$ или механосинтез при $E_D=52.8\,{
m кДж/r}$ (X_1), а также энергия деформационного воздействия на материал E_D в процессе AO (X_2) .

При проведении эксперимента был выбран план 2×3 , где 2 – два уровня способа обработки (закалка, механосинтез), а 3 – три уровня энергии деформации E_D .

Опыты проводились в случайном порядке, ошибки воспроизводимости опытов составляли $S_1=0.117$ ГПа, $S_2=4.94$ кДж/моль, $S_3=0.0276$, $S_4=3$ К и $S_5=20$ К. Матрица плана и результаты опытов приведены в табл. 1, где X_1, X_2 – кодированные уровни факторов: способа приготовления порошка ($X_1=-1$ – закалка; $X_1=+1$ – механосинтез) и обработки в аттритторе при различных значениях энергии деформации ($X_2-E_D=0$; 12,5 и 25 кДж/г).

План эксперимента 2 × 3 при статистическом моделировании механосинтеза аморфного порошка

Номер опыта	<i>X</i> ₁	X ₂	X_1X_2	X_2^2	$Y_1 = H_{\mu}$	$Y_2 = E_a$	$Y_3 = n$	$Y_4 = \Delta T$	$Y_5 = T_V$
1	-	-	+	+	10,667	320	2,307	220	756
2	-	0	0	0	12,112	400	2,773	315	802
3	+	_	-	+	11,722	520	3,000	380	818
4	+	-	-	+	10,889	458	2,467	235	498
5	+	0	0	0	12,278	584	2,933	300	834
6	+	+	+	+	12,278	682	3,107	335	850

После статистической обработки результатов эксперимента по методике работы [4] и проверки значимости коэффициентов уравнений были получены адекватные модели:

$$Y_1 = H_u$$
, $\Gamma \Pi a = 12,195 + 0,157X_1 + 0,611X_2 - 0,806X_2^2$; (1)

$$Y_2 = E_a$$
, кДж/моль = $492 + 81X_1 + 0,106X_2 + 6X_1X_2$; (2)

$$Y_3 = n = 2,853 + 0,081X_1 + 0,333X_2 - 0,133X_2^2;$$
 (3)

$$Y_4 = \Delta T$$
, $K = 307.5 - 7.5X_1 + 65X_2 - 15X_1X_2 - 15X_2^2$; (4)

$$Y_5 = T_V, K = 818 + 28.5X_2.$$
 (5)

Из уравнения (1) видно, что на микротвердость получаемой композиции H_{μ} наибольшее влияние оказывает $E_D(X_2)$ при ее АО, влияние же способа приготовления порошка (X_1) намного меньше. Максимальное значение $H_{\mu}=12,35$ ГПа получено при $X_1=+1$ и $X_2=0$, т.е. при механосинтезе и последующей АО с $E_D=12,5$ кДж/г.

Если в уравнение (1) подставить $X_1 = +1$, получим уравнение наработки

$$Y_1 = 12,352 + 0,611X_2 - 0,806X_2^2$$

с точкой перегиба $X_{2e}=0,379$ ($E_D=17,2$ кДж/г), в которой $Y_1=12,47$ ГПа. С учетом же ошибки эксперимента ($S_1=0,117$ ГПа) этот результат практически не отличается от $Y_1=12,35$ ГПа.

Анализ уравнения (2) также показывает, что на энергию активации процесса перекристаллизации аморфного порошка при нагреве наибольшее влияние оказывает энергия деформации порошка при его предварительной АО E_D (X_2). При ее возрастании идет неуклонный рост E_a . Максимальное значение получено при X_1 =

= +1 (механосинтез) и X_2 = +1 (E_D = 25 кДж/г). В этом случае $E_{\rm a}$ = 685 кДж/моль.

Из уравнений (3) – (5) также видно, что на параметры перекристаллизации $Y_3=n,\ Y_4=\Delta T$ и $Y_5=T_V$ наибольшее влияние оказывает энергия деформации порошка при его предварительной АО E_D (X_2). Более того, на $T_V=Y_5$ первый фактор — способ получения порошка (X_1) — не влияет, как это видно из уравнения (5).

Таким образом, можно сделать вывод, что сплавы, полученные механосинтезом ($X_1 = +1$), обладают более высокой температурной стабильностью.

Определенный интерес представляет выявление тесноты связи между исследуемыми параметрами оптимизации. Для этого рассчитали коэффициенты парной корреляции: $R_{1,2}$, $R_{1,3}$, $R_{1,4}$, $R_{1,5}$, $R_{2,3}$, $R_{2,4}$, $R_{2,5}$, $R_{3,4}$, $R_{3,5}$ и $R_{4,5}$ по формуле

$$R_{ij} = \frac{\sum_{1}^{N} \Delta Y_i \Delta Y_j}{\sqrt{\sum_{1}^{N} \Delta Y_i^2 - \sum_{1}^{N} \Delta Y_j^2}},$$

где ΔY_i , ΔY_j — разности между текущим и средним значениями параметров Y_i и Y_j , т.е. $\Delta Y_i = Y_i - \overline{Y_i}$, а $\Delta Y_j = Y_j - \overline{Y_j}$. В результате получили следующие значения коэффициентов парной корреляции:

$$R_{1,2} = 0.924;$$
 $R_{1,3} = 0.99;$ $R_{1,4} = 0.958;$ $R_{1,5} = 0.905;$ $R_{2,3} = 0.947;$ $R_{2,4} = 0.960;$ $R_{2,5} = 0.957;$ $R_{3,4} = 0.859;$ $R_{3,5} = 0.945;$ $R_{4,5} = 0.931,$

что выше табличного значения $R_{\rm kp} = 0.8114$ (при $\alpha = 0.05$ и f = 6 - 2 = 4). Это позволяет выразить связь между всеми параметрами в виде линейных корреляционных уравнений:

$$Y_2 = E_a = 169,2Y_1 - 1485,6;$$
 (6)

$$Y_3 = n = 0.44Y_1 - 2.39;$$
 (7)

$$Y_4 = \Delta T = 81,94Y_1 - 661,25;$$
 (8)

$$Y_3 = n = 1,628 + 0,0023Y_2;$$
 (9)

$$Y_4 = \Delta T = 75,71 + 0,45Y_2; \tag{10}$$

$$Y_5 = T_v = 690,61 + 0,249Y_2;$$
 (11)

$$Y_4 = \Delta T = 165Y_3 - 158.8; \tag{12}$$

$$Y_5 = T_p = 538,7 + 98Y_3; (13)$$

Таблица 2

$$Y_5 = T_v = 660,365 + 0,502Y_4.$$
 (14)

Уравнения (6) — (14) позволяют по одному из параметров рассчитать все остальные. Значения рассчитанных коэффициентов корреляции сведены в табл. 2.

Значения коэффициентов корреляции

Параметр	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅
H_{μ}		0,924	0,99	0,958	0,905
$E_{\mathbf{a}}$	0,924		0,947	0,961	0,957
n	0,99	0,947		0,859	0,945
ΔT	0958	0,961	0,859		0,931
T_V	0,905	0,957	0,945	0,931	

На основе полученных результатов можно сделать вывод, что деформационное воздействие на аморфный материал при его АО снижает содержание присутствующих в виде примесей кристаллических фаз, нарушает ближний порядок расположения атомов, существенно уменьшает коэффициенты диффузии элементов, сокращает число зародышей новых фаз и скорость их роста, тормозя процесс перекристаллизации и вызывая переход от нестабильной структуры к метастабильной.

Для исследования кинетики перекристаллизации аморфного сплава Fe-Ni-Cr-B-Si-Mo-Co был также проведен эксперимент по плану 3×3, где 3 – три уровня времени отжига, с (0, 750 и 1500) и три уровня предварительной подготовки порошковой композиции (закалка со скоростью $\Delta T/\Delta \tau = 4\cdot 10^5$ К/с без АО, отжиг при $T_V = 755$ К; закалка со скоростью $\Delta T/\Delta \tau = 4\cdot 10^5$ К/с + 6 ч АО при $E_D = 26,7$ кДж/г, отжиг при $T_V = 818$ К; 12 ч механосинтез при $E_D = 52,8$ кДж/г + АО при $E_D = 26,4$ кДж/г, отжиг при $T_V = 852$ К).

В качестве параметра оптимизации (Y_6) выбрали содержание аморфной фазы C_A , %. Ошибка воспроизводимости опытов S_6 = 1,3% (1,7% от среднего значения Y_6 = 75%). Матрица плана и результаты опытов приведены в табл. 3.

Матрица плана и результаты исследования кинетики перекристаллизации

Номер опыта	<i>X</i> ₁	X ₂	X_1X_2	X_1^2	X_2^2	Y ₆ , %
1	-	_	+	+	+	82,7
2	-	0	0	+	0	96,7
3	-	+	-	+	+	100,0
4	0	-	0	0	+	60,0
5	0	0	0	0	0	90,0
6	0	+	0	0	+	94,7
7	+	_	_	+	+	20
8	+	0	0	+	0	56,7
9	+	+	+	+	+	73,3

После обработки результатов получена адекватная модель в виде полинома второго порядка:

$$Y_6 = C_A$$
, % = 87,8 - 21,6 X_1 + 17,6 X_2 + 9 X_1X_2 - 10 X_1^2 - 9,4 X_2^2 . (15)

Из уравнения (15) видно, что наибольшее влияние на содержание аморфной фазы оказывает время отжига (X_1) . Максимальное же содержание этой фазы (Y_6 =100%) получается при X_1 = -1 и $X_2 = +1$, т.е. в отсутствии отжига ($\tau = 0$) при следующем оптимальном режиме получения порошка: 12 ч механосинтез в аттритторе при $E_D = 52.8 \text{ кДж/г} + 6 \text{ ч АО при } E_D = 26.4 \text{ кДж/г}.$ В этом случае сплав Fe-Ni-Cr-B-Si-Мо-Со полностью аморфизирован, обладает высо<mark>кой температурной стабильностью: эне</mark>ргия активации перекристаллизации $E_a = 680,7~\mathrm{kДж/моль},$ показатель n = 3,12. Именно этот режим аморфизации порошковой композиции был принят в качестве базового при подготовке материала для последующего его газотермического напыления на рабочие поверхности роликов для прокатки катанки круга 5,5 (металлокорд) в сортопрокатном цехе РУП «БМЗ». Для стана 150 изготовлена опытно-промышленная партия роликов 12 типоразмеров в количестве 5500 штук. Опытные прокатные ролики изготовлены из стали 30 с покрытиями толщиной 0,5...0,6 мм рабочих поверхностей вышеуказанным сплавом. В структуре покрытий сохраняется до 35 об. % метастабильной аморфной составляющей.

Натурные испытания роликов свидетельствуют: материалы покрытий за счет аморфной составляющей в структуре, метастабильной при напылении и в условиях эксплуатации, имеют более высокие механические и триботехнические свойства, чем традиционно применяемые на РУП «БМЗ» для изготовления прокатных роликов термообработанные высоколегированные стали [3]. Это

обеспечивает увеличение стойкости опытных деталей по сравнению с базовым вариантом до 7,5 раза (с 200 до 1500 т проката). Использование покрытий с аморфной составляющей на рабочих поверхностях роликов не снижает качества поверхности проката. Стоимость опытных деталей ниже по сравнению с базовым вариантом в 1,16 раза.

ЛИТЕРАТУРА

- 1. Горанский, Г.Г. О повышении при механоактивации температурной стабильности аморфных сплавов на основе железа / Г.Г. Горанский // Металлургия. 2002. № 26. С. 119-124.
- 2. Горанский, Г.Г. О кинетике и параметрах перекристаллизации метастабильных аморфных сплавов на основе железа / Г.Г. Горанский // Металлургия, 2003. № 27. С. 89-93.
- 3. Горанский, Г.Г. Особенности механосинтеза аморфных порошков на основе Fe для газотермического напыления покрытий / Г.Г. Горанский, Е.Д. Манойло // Вестник ПГУ. 2003. № 4. Т. 2. С. 47-52.
- 4. Вознесенский, В.А. Статистические методы планирования эксперимента в технико-экономических исследованиях / В.А. Вознесенский. М.: Финансы и статистика, 1981. 264 с.