НЕЛИНЕЙНЫЙ ИЗГИБ СЭНДВИЧ-ПЛАСТИНЫ НА ОСНОВАНИИ ПАСТЕРНАКА

А.Г. Козел

Белорусский государственный университет транспорта, Гомель

Актуальным направлением в авиа- и ракетостроении является снижение массы элементов конструкций. Многослойные конструкции при относительно малом весе, способны обеспечить не только заданные показатели прочности и жесткость, но и противостоять ряду других отрицательных воздействий. Поэтому возникает актуальная проблема разработки эффективных методик их расчета.

Деформированию сэндвич-пластин под действием динамических нагрузок посвящены статьи [1–3]. В статьях [4, 5] рассматривалось влияние сжимаемости заполнителя на перемещения в пластине в случае осессиметричного деформирования, неосесимметричноем нагружение пластин исследовалось в [6].

Осесимметричное деформирование несимметричных по толщине упругих трехслойных пластин на основании Пастернака исследовалось в работах [7–9], анализ напряжений в упругой круглой сэндвич-пластине выполнен в работе [10].

Постановки краевой задачи для упругопластической круговой трехслойной пластины, связанной с основанием Пастернака в усилиях и перемещениях, приведены в статьях [11, 12].

Здесь приведены постановки краевой задачи в усилиях и перемещениях, исследованы перемещения в упругопластической круговой сэндвич-пластине, связанной со сложным основанием модели Пастернака.

1. Постановка задачи. Рассматривается сэндвич-пластина на упругом основании (рис. 1). Для изотропных несущих слоев толщиной $h_1=h_2$ приняты гипотезы Кирхгофа о несжимаемости, прямолинейности и перпендикулярности нормали к деформированной срединной плоскости пластины. В несжимаемом по толщине заполнителе ($h_3 = 2c$) деформированная нормаль остается прямолинейной, не изменяет своей длины, но поворачивается на некоторый дополнительный угол ψ . Заполнитель считается легким, т. е.

не учитывается работа касательных напряжений $\sigma_{rz}^{(3)}$ в тангенциальном направлении. На контуре пластины предполагается жесткая диафрагма, которая препятствует относительному сдвигу слоев. Цилиндрическая система координат *r*, φ , *z* связана со срединной плоскостью заполнителя.

Рис. 1. Схема деформирования сэндвич-пластины

Ввиду симметрии пластины радиальное перемещение координатной плоскости u(r) отсутствует. Решение задачи сводится к нахождению двух неизвестных функций – относительного сдвига в заполнителе $\psi(r)$ и прогиба пластины w(r). Осесимметрич-

ная нагрузка $q_0(r)$ распределена по верхнему слою пластины, реакция основания согласно модели Пастернака, [13]:

$$q_R(r) = -\kappa_0 w + t_f \Delta w, \tag{1}$$

где κ_0 – коэффициент сжатия; t_f – коэффициент сдвига материала основания; Δ – оператор Лапласа в полярной системе координат

$$\Delta w(r) = \frac{\mathrm{d}^2 w}{\mathrm{d} r^2} + \frac{1}{r} \frac{\mathrm{d} w}{\mathrm{d} r}.$$

Используя гипотезу прямолинейности нормали заполнителя $2\varepsilon_{rz}^{(3)} = u_r^{(3)}, + w, = \psi$, после интегрирования получим выражения радиальных перемещений в слоях u_r^k (k = 1, 2, 3 – номер слоя) через искомые функции $\psi(r)$, w(r):

$$u_{r}^{(1)} = c\psi - zw_{r}, \qquad (c \le z \le c + h_{1}),$$

$$u_{r}^{(3)} = z\psi - zw_{r}, \qquad (-c \le z \le c),$$

$$u_{r}^{(2)} = -c\psi - zw_{r}, \qquad (-c - h_{1} \le z \le -c),$$
(2)

где су – величина смещения внешнего несущего слоя за счет деформации заполнителя;

-с и – величина смещения для второго несущего слоя;

z – координата рассматриваемого волокна;

запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате.

Деформации в слоях получим из (2) и соотношений Коши

$$\varepsilon_{r}^{(1)} = c\psi_{,r} - zw_{,rr}, \quad \varepsilon_{\varphi}^{(1)} = \frac{1}{r}(c\psi - zw_{,r}), \quad \varepsilon_{rz}^{(1)} = 0,$$

$$\varepsilon_{r}^{(2)} = -c\psi_{,r} - zw_{,rr}, \quad \varepsilon_{\varphi}^{(2)} = \frac{1}{r}(-c\psi - zw_{,r}), \quad \varepsilon_{rz}^{(2)} = 0,$$

$$\varepsilon_{r}^{(3)} = z\psi_{,r} - zw_{,rr}, \quad \varepsilon_{\varphi}^{(3)} = \frac{1}{r}(z\psi - zw_{,r}), \quad \varepsilon_{rz}^{(3)} = \frac{1}{2}\psi.$$

Предполагается, что материалы несущих слоев в процессе деформирования проявляют упругопластические свойства, заполнитель – нелинейно упругие. Физические уравнения состояния соответствуют теории малых упругопластических деформаций:

$$s_{\alpha}^{(k)} = 2G_k (1 - \omega_k(\varepsilon_u^{(k)})) \mathfrak{s}_{\alpha}^{(k)}, \quad \sigma^{(k)} = 3K_k \varepsilon^{(k)},$$

$$s_{zz}^{(3)} = 2G_3 \mathfrak{s}_{zz}^{(3)} (1 - \omega_3(\varepsilon_u^{(3)})), \quad (k = 1, 2, 3, \ \alpha = r, \varphi),$$
(3)

где $s_a^{(k)}$, $\mathfrak{g}_a^{(k)}$, $\mathfrak{s}^{(k)}$, $\varepsilon^{(k)}$ – девиаторные и шаровые части тензоров напряжений и деформаций; G_k , K_k – модули сдвиговой и объемной деформации *k*-го слоя; $\omega_k(\varepsilon_u^{(k)})$ –

функции пластичности материалов несущих слоев, которые в случае $\varepsilon_u^{(k)} \le \varepsilon_y^{(k)}$ следует положить равными нулю; $\varepsilon_u^{(k)}$ – интенсивность деформаций в *k*-м слое (*k*=1, 2), $\varepsilon_y^{(k)}$ – деформационный предел текучести материалов несущих слоев; $s_{rz}^{(3)}$, $\vartheta_{rz}^{(3)}$ – касательное напряжение и угловая деформация в заполнителе; $\omega_3(\varepsilon_u^{(3)})$ – универсальная функция физической нелинейности заполнителя, причем $\omega_3 \equiv 0$ при $\varepsilon_u^{(3)} \le \varepsilon_s^{(3)}$; $\varepsilon_s^{(3)}$ – предел физической нелинейности материала заполнителя.

Используя компоненты тензора напряжений $\sigma_{\alpha}^{(k)}$ ($\alpha = r, \varphi$), введем в слоях внутренние силы $T_{\alpha}^{(k)}$ и моменты $M_{\alpha}^{(k)}$, а также обобщенные усилия T_{α} , M_{α} , H_{α} в пластине:

$$T_{\alpha}^{(k)} = \int_{h_{k}} \sigma_{\alpha}^{(k)} dz , \quad M_{\alpha}^{(k)} = \int_{h_{k}} \sigma_{\alpha}^{(k)} z dz ,$$

$$T_{\alpha} \equiv \sum_{k=1}^{3} T_{\alpha}^{(k)} , \quad M_{\alpha} \equiv \sum_{k=1}^{3} M_{\alpha}^{(k)} , \quad H_{\alpha} = M_{\alpha}^{(3)} + c \left(T_{\alpha}^{(1)} - T_{\alpha}^{(2)}\right).$$
(4)

Компоненты тензора напряжений в слоях, используя (3), представим через девиаторную и шаровую части тензора деформаций, выделив упругие (индекс «е») и неупругие (индекс «ω») слагаемые:

$$\sigma_{\alpha}^{(k)} = \sigma_{\alpha e}^{(k)} - \sigma_{\alpha \omega}^{(k)}, \quad (\alpha = r, \varphi; \ k = 1, 2, 3),$$

$$\sigma_{rz}^{(3)} = \sigma_{rze}^{(3)} - \sigma_{rz\omega}^{(3)},$$
(5)

где

$$\sigma_{ae}^{(k)} = 2G_k \vartheta_{\alpha}^{(k)} + K_k \theta^{(k)}, \quad \sigma_{\alpha\omega}^{(k)} = 2G_k \omega_k \vartheta_{\alpha}^{(k)}, \quad \sigma_{rze}^{(3)} = 2G_3 \vartheta_{rz}^{(3)}, \quad \sigma_{rz\omega}^{(3)} = 2G_3 \omega_3 \vartheta_{rz}^{(3)},$$

Внутренние усилия и моменты в слоях пластины также представим в виде разности линейной (индекс «е») и нелинейной (индекс «ю») частей:

$$T^{(k)}_{\alpha} = T^{(k)}_{\alpha e} - T^{(k)}_{\alpha \omega} , \quad M^{(k)}_{\alpha} = M^{(k)}_{\alpha e} - M^{(k)}_{\alpha \omega}$$

Величины $T_{\alpha e}^{(k)}$, $T_{\alpha \omega}^{(k)}$, $M_{\alpha e}^{(k)}$, $M_{\alpha \omega}^{(k)}$ вычисляются по формулам (4), в которых напряжения $\sigma_{\alpha}^{(k)}$ нужно заменить соответственно на $\sigma_{\alpha e}^{(k)}$, $\sigma_{\alpha \omega}^{(k)}$ (5). После этого обобщенные внутренние усилия будут следующими:

$$T_{\alpha} = T_{\alpha e} - T_{\alpha \omega} = \sum_{k=1}^{3} T_{\alpha e}^{(k)} - \sum_{k=1}^{3} T_{\alpha \omega}^{(k)} , \quad M_{\alpha} = M_{\alpha e} - M_{\alpha \omega} = \sum_{k=1}^{3} M_{\alpha e}^{(k)} - \sum_{k=1}^{3} M_{\alpha \omega}^{(k)} ,$$

$$H_{\alpha e} = M_{\alpha e}^{(3)} + c \left(T_{\alpha e}^{(1)} - T_{\alpha e}^{(2)} \right), \quad H_{\alpha \omega} = M_{\alpha \omega}^{(3)} + c \left(T_{\alpha \omega}^{(1)} - T_{\alpha \omega}^{(2)} \right).$$
(6)

Система дифференциальных уравнений равновесия в усилиях, описывающая деформирование круговой упругой трехслойной пластины на упругом основании была получена в [8] без использования физических уравнений состояния, поэтому ее можно принять за исходную:

$$H_{r,r} + \frac{1}{r}(H_r - H_{\varphi}) = 0$$
,

$$M_{r,rr} + \frac{1}{r} (2M_{r,r} - M_{\varphi,r}) = -(q_0 + q_R).$$
⁽⁷⁾

На контуре пластины (r = R) должны выполняться силовые граничные условия

$$H_r = H_r^0, \ M_r = M_r^0, \ M_r, + \frac{1}{r}(M_r - M_{\phi}) = Q^0.$$
(8)

Выделяя в обобщенных внутренних усилиях уравнений (7) линейные и нелинейные составляющие, в соответствии с формулами (6), получим

$$H_{r,r} + \frac{1}{r} (H_{r} - H_{\phi}) = h_{\omega} ,$$

$$M_{r,rr} + \frac{1}{r} (2M_{r,r} - M_{\phi}, r) = -q_{0} - q_{R} + q_{\omega} .$$
(9)

Здесь в левой части уравнений собраны линейные составляющие обобщенных внутренних усилий, причем нижний индекс «е» в дальнейшем опущен для удобства. Нелинейные добавки сосредоточены справа и включены в слагаемое с нижним индексом «ω»:

$$h_{\omega} = H_{r\omega,r} + \frac{1}{r} (H_{r\omega} - H_{\varphi\omega}),$$

$$q_{\omega} = M_{r\omega,rr} + \frac{1}{r} (2M_{r\omega,r} - M_{\varphi\omega,r}).$$
(10)

С граничными условиями (8) поступаем аналогично:

$$H_r = H_r^1 + H_{\omega}, \ M_r = M_r^1 + M_{\omega},$$
$$M_{r,r} + \frac{1}{r}(M_r - M_{\varphi}) = Q^1 + M_{r\omega,r} + \frac{1}{r}(M_{r\omega} - M_{\varphi\omega})$$

2. Уравнения равновесия в перемещениях. Линейные (упругие) составляющие обобщенных внутренних усилий по-прежнему выражаются через перемещения по формулам, приведенным в [8], поэтому система дифференциальных уравнений равновесия в перемещениях, соответствующая (9), с учетом (1) принимает вид:

$$L_{2}(a_{1}\psi - a_{2}w_{,r}) = h_{\omega},$$

$$L_{3}(a_{2}\psi - a_{2}w_{,r}) - \kappa_{0}w + t_{f}\Delta w = -q_{0} + q_{\omega}.$$
(11)

где коэффициенты a_i и дифференциальные операторы L_2 , L_3 следующие

$$a_{1} = c^{2} \left(2h_{1}K_{1}^{+} + \frac{2}{3}cK_{3}^{+} \right), \quad a_{2} = c \left[2h_{1} \left(c + \frac{1}{2}h_{1} \right)K_{1}^{+} + \frac{2}{3}c^{2}K_{3}^{+} \right],$$

$$a_{3} = 2h_{1} \left(c^{2} + ch_{1} + \frac{1}{3}h_{1}^{2} \right)K_{1}^{+} + \frac{2}{3}c^{3}K_{3}^{+}, \quad K_{k}^{+} \equiv K_{k} + \frac{4}{3}G_{k}, \quad K_{k}^{-} \equiv K_{k} - \frac{2}{3}G_{k},$$

$$L_{2}(g) \equiv \left(\frac{1}{r} (rg)_{r} \right)_{r} \equiv g_{rrr} + \frac{g_{rr}}{r} - \frac{g}{r^{2}}, \quad L_{3}(g) \equiv \frac{1}{r} \left(rL_{2}(g) \right)_{r} \equiv g_{rrr} + \frac{2g_{rr}}{r} - \frac{g_{rr}}{r^{2}} + \frac{g}{r^{3}}$$

Система уравнений (11) является нелинейной, поэтому для ее решения применим метод упругих решений Ильюшина. В этом случае система (11) переписывается в итерационном виде:

$$L_{2}(a_{1}\psi^{(n)} - a_{2}w_{,r}^{(n)}) = h_{\omega}^{(n-1)},$$

$$L_{3}(a_{2}\psi^{(n)} - a_{3}w_{,r}^{(n)}) - \kappa_{0}w^{(n)} + t_{f}\Delta w^{(n)} = -q_{0} + q_{\omega}^{(n-1)}.$$
(12)

где n – номер приближения; $h_{\omega}^{(n-1)}$, $q_{\omega}^{(n-1)}$ – дополнительные «внешние» нагрузки, которые на первом шаге полагают равными нулю, а в дальнейшем вычисляют по результатам предыдущего приближения по формулам типа (10)

$$h_{\omega}^{(n-1)} = H_{r\omega}^{(n-1)}, + \frac{1}{r} (H_{r\omega}^{(n-1)} - H_{\varphi\omega}^{(n-1)}), \quad q_{\omega}^{(n-1)} = M_{r\omega}^{(n-1)}, + \frac{1}{r} (2M_{r\omega}^{(n-1)}, -M_{\varphi\omega}^{(n-1)}, -M_{\varphi\omega}^{(n-1)}), \quad (13)$$

где

$$M_{\alpha\omega}^{(n-1)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha\omega}^{(k)(n-1)} z \, \mathrm{d} z = \sum_{k=1}^{3} \int_{h_{k}} 2G_{k} \omega_{k} \left(\varepsilon_{\alpha}^{(k)(n-1)}\right) \mathfrak{g}_{\alpha}^{(k)(n-1)} z \, \mathrm{d} z \,, \quad H_{\alpha\omega}^{(n-1)} = M_{\alpha\omega}^{(3)(n-1)} + c \left(T_{\alpha\omega}^{(1)(n-1)} - T_{\alpha\omega}^{(2)(n-1)}\right) \,.$$

Таким образом, на каждом шаге приближения мы имеем линейную задачу теории упругости с известными дополнительными «внешними» нагрузками (13).

3. Решение краевой задачи. С помощью первого уравнения системы (12) во втором уравнении обнуляем коэффициент перед функцией $\psi^{(n)}$. После двукратного интегрирования и некоторых преобразований этих уравнений получим:

$$\Psi^{(n)} = b_2 w_{r}^{(n)} + \frac{1}{a_1} \frac{1}{r} \int_0^r r_0^r (h_{\omega}^{(n-1)}) \, \mathrm{d} r \, \mathrm{d} r + C_1^{(n)} r + \frac{C_2^{(n)}}{r},$$

$$L_3(w_{r}^{(n)}) - t_{f1} \Delta w^{(n)} + \kappa^4 w^{(n)} = q + f_{\omega}^{(n-1)},$$
(14)

где $C_1^{(n)}, C_2^{(n)}$ – константы интегрирования на *n*-м шаге;

$$t_{f1} = t_f D, \quad \kappa^4 = \kappa_0 D, \quad q = q_0 D, \quad f_{\omega}^{(n-1)} = -Dq_{\omega}^{(n-1)} + D_1 \frac{1}{r} (rh_{\omega}^{(n-1)}), \quad D = \frac{a_1}{a_3 a_1 - a_2^2},$$
$$D_1 = \frac{a_2}{a_1 a_3 - a_2^2}.$$

Решение третьего уравнения системы (14) получим по методике, примененной при решении задачи теории упругости [10], тогда рекуррентный прогиб будет

$$w^{(n)} = C_3^{(n)} J_0(\sqrt{a}\kappa r) + C_4^{(n)} H_0^{(1)}(\sqrt{a}\kappa r) + C_5^{(n)} J_0(\sqrt{a}\kappa r) + C_6^{(n)} H_0^{(2)}(\sqrt{a}\kappa r) + w_p^{(n)}(r),$$
(15)

где $J_0(\sqrt{a\kappa r})$, $J_0(\sqrt{a\kappa r}) - функции Бесселя первого рода, нулевого порядка, комплекс$ $ных аргументов <math>\sqrt{a\kappa r}$ и $\sqrt{a\kappa r}$, $H_0^{(1)}(\sqrt{a\kappa r})$, $H_0^{(2)}(\sqrt{a\kappa r}) - функции Ханкеля первого и$ второго рода, нулевого порядка от тех же аргументов, <math>a и \overline{a} – корни характеристического уравнения, полученные в [10]; $w_p^{(n)}(r)$ – частное решение третьего уравнения (14).

Рекуррентное решение задачи об изгибе круговой упругопластической трехслойной пластины на упругом основании, с учетом ограниченности перемещений в центре пластины $C_2^{(n)} = C_4^{(n)} = C_6^{(n)} = 0$ принимает вид

$$\Psi^{(n)} = b_2 w_{r}^{(n)} + \frac{1}{a_1} \frac{1}{r} \int_0^r r \int_0^r (h_{\omega}^{(n-1)}) \,\mathrm{d}r \,\mathrm{d}r + C_1^{(n)}r \,,$$

$$w^{(n)} = C_3^{(n)} J_0(\sqrt{a} \kappa r) + C_5^{(n)} J_0(\sqrt{\overline{a}} \kappa r) + w_p^{(n)}(r) .$$
(16)

Константы интегрирования $C_1^{(n)}$, $C_3^{(n)}$, $C_5^{(n)}$ следуют из условий закрепления пластины.

При жесткой заделке контура пластины решение (16) необходимо подставить в граничные условия

$$\Psi^{(n)} = W^{(n)} = W^{(n)}, = 0$$
 при $r = R$.

В результате получим следующие константы интегрирования

$$C_{1}^{(n)} = -\frac{1}{a_{1}R^{2}} \int r \int (h_{\omega}^{(n-1)}) dr dr \bigg|_{r=R},$$

$$C_{3}^{(n)} = \frac{w_{p}^{\prime(n)}(R)J_{0}(\sqrt{a}\kappa R) + \kappa\sqrt{a}J_{1}(\sqrt{a}\kappa R)w_{p}^{(n)}(R)}{\kappa(\sqrt{a}J_{1}(\sqrt{a}\kappa R)J_{0}(\sqrt{a}\kappa R) - \sqrt{a}J_{1}(\sqrt{a}\kappa R)J_{0}(\sqrt{a}\kappa R))},$$

$$C_{5}^{(n)} = \frac{w_{p}^{\prime(n)}(R)J_{0}(\sqrt{a}\kappa R) + \kappa\sqrt{a}J_{1}(\sqrt{a}\kappa R)w_{p}^{(n)}(R)}{\kappa(\sqrt{a}J_{1}(\sqrt{a}\kappa R)J_{0}(\sqrt{a}\kappa R) - \sqrt{a}J_{0}(\sqrt{a}\kappa R)J_{1}(\sqrt{a}\kappa R))}.$$
(17)

Таким образом, система (16) с константами интегрирования (17) дает рекуррентное решение задачи теории малых упругопластических деформаций для искомой пластины при произвольной осесимметричной нагрузке.

4. Численный параметрический анализ. Численные результаты получены для защемленной по контуру пластины единичного радиуса R = 1 м, связанной с основанием средней жесткости ($\kappa_0 = 100 \text{ МПа/м}$). Величина интенсивности поверхностной нагрузки $q_0 = -18 \text{ МПа}$ принята таким образом, чтобы нелинейные свойства материалов слоев проявились в достаточной степени; толщины слоев $h_1 = h_2 = 0,04$ м, $h_3 = 0,4$ м.

Функции пластичности и нелинейности в соотношениях (3) удобно представить в виде, предложенном в [14]:

$$\omega_{k}(\varepsilon_{u}) = \begin{cases} 0, & \varepsilon_{u} \leq \varepsilon_{y}, \\ A_{k}(1 - \varepsilon_{y}^{(k)} / \varepsilon_{u})^{\alpha_{k}}, & \varepsilon_{u} > \varepsilon_{y}, \end{cases}$$

где *A_k*, *α_k* – константы нелинейности материалов слоев.

Принимается, что верхние несущие слои пластины выполнены из алюминиевого сплава Д16Т, для заполнителя выбран фторопласт-4 (ПТФЭ), соответствующие упругие и нелинейные характеристики материалов заимствованы из [15]: Д16Т – $A_1 = 0,96$; $\alpha_1 = 2,34$; $\varepsilon_y^{(1)} = 0,735$ %, для фторопласта – $A_3 = 0,905$; $\alpha_3 = 1,48$; $\varepsilon_s = \varepsilon_y^{(3)} = 3,3$ %.

Численное исследование итерационного решения (7) продемонстрировало быструю сходимость метода (рис. 2). Это подтверждают графики прогиба w и сдвига в заполнителе ψ вдоль радиуса пластины на рисунке 2 а, б, номер кривой соответствует номеру итерации. За искомое решение принимается 4-ое приближение, отличающееся

от предыдущего менее чем на 1 %. Учет физической нелинейности материалов слоев искомой пластины дает увеличение расчетных перемещений до 14 %.

Рис. 2. Сходимость метода упругих решений ($t_f = 0$ МПа·м)

На рис. З *а*, б показано изменение перемещений вдоль радиуса пластины при различных коэффициентах сдвига основания t_f , МПа·м: $1 - t_f = 0$, $2 - t_f = 1$, $3 - t_f = 10$. При $t_f = 1$ МПа·м уменьшение максимумов перемещений достигает 19 %, дальнейшее увеличение коэффициента сдвига до $t_f = 10$ МПа·м приводит к уменьшению перемещений до 45 %.

Рис. 3. Зависимость перемещений от коэффициента сдвига основания

Учет сдвиговой жесткости основания оказывает существенное влияние на деформирование сэндвич-пластины.

Работа выполнена при финансовой поддержке Белорусского Республиканского фонда фундаментальных исследований (проект № T19PM-089).

ЛИТЕРАТУРА

1. Starovoitov, E.I. Vibration of circular sandwich plates under resonance loads / E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya // International Applied Mechanics. -2003. -*Vol.* 39. $-N_{2}$ 12. -P. 1458–1463.

2. Starovoitov, E.I. Circular sandwich plates under local impulsive loads / E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya // International Applied Mechanics. $-2003. -Vol. 39. - N_{2} 8. -P. 945-952.$

3. Starovoitov E.I. Vibrations of circular sandwich plates under resonant loads / I.E. Starovoitov D.V. Leonenko, A.V. Yarovaya // International Applied Mechanics. $-2003. - Vol. 39. - N_{2} 12. - P. 1458-1463.$

4. Старовойтов, Э.И. Изгиб круговой трехслойной пластины с легким сжимаемым заполнителем / Э. И. Старовойтов, Ю. В. Захарчук // Проблемы машиностроения и автоматизации. – 2018. – № 4. – С. 88–97.

5. Зеленая, А.С. Деформирование упругой трехслойной прямоугольной пластины со сжимаемым заполнителем / А. С. Зеленая // Известия Гомельского гос. ун-та им. Ф. Скорины. Естественные науки. – 2017. – № 6 (105). – С. 89–95.

6. Нестерович, А. В. Уравнения равновесия трехслойной круговой пластины при неосесимметричном нагружении / А. В. Нестерович // Теоретическая и прикладная механика: междунар. научн.-техн. сб. – Минск : БНТУ, 2019. – Вып. 34. – С. 154–159.

7. Козел, А.Г. Перемещения в круговой трехслойной пластине на двухпараметрическом основании / А.Г. Козел // Механика. Исследования и инновации. – 2017. – Вып. 10. – С. 90–95.

8. Козел, А.Г. Деформирование круговой трехслойной пластины, защемленной по контуру, на основании Пастернака / А.Г. Козел // Теоретическая и прикладная механика: междунар. научн.-техн. сб. – Минск: БНТУ. – 2018. – № 33. – С. 318–323.

9. Старовойтов, Э.И. Изгиб упругой трехслойной круговой пластины на основании Пастернака / Э.И. Старовойтов, А.Г. Козел // Механика композиционных материалов и конструкций. – 2018. – Т. 24. – №1. – С. 392–406.

10. Козел, А. Г. Влияние сдвиговой жесткости основания на напряженное состояние сэндвич-пластины / А. Г. Козел // Фундаментальные и прикладные проблемы техники и технологии. – 2018. – № 6 (332). – С. 25–35.

11. Козел, А. Г. Уравнения равновесия упругопластической круговой пластины на основании Пастернака / А. Г. Козел // Механика. Исследования и инновации: междун. сб. научн. тр. – Гомель, 2018. – Вып. 11. – С. 127–133.

12. Козел, А.Г. Решение задачи об изгибе упругопластической круговой пластины на основании Пастернака / А. Г. Козел // Теоретическая и прикладная механика – Минск: БНТУ, 2019. – Вып. 34. – С. 165–171.

13. Пастернак, П.Л. Основы нового метода расчета фундаментов на упругом основании при помощи двух коэффициентов постели / П.Л. пастернак // – М.: Гос. издво литературы по строительству и архитектуре, – 1954. – 55 с.