Б.Б. ХИНА, докт. физ.-мат. наук (ФТИ НАН Беларуси), Н.Г. КУХАРЕВА, канд. техн. наук, В.Ф. ПРОТАСЕВИЧ, канд. техн. наук (БНТУ)

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИНТЕЗА ПОРОШКОВЫХ СРЕД ДЛЯ БОРИРОВАНИЯ

Среди процессов химико-термической обработки сталей и сплавов особое место занимает борирование. Повышенный интерес к процессу борирования обусловлен возможностью получения в поверхностной зоне обрабатываемых изделий моно- или многофазных боридных слоев, характеризующихся уникальным комплексом физико-химических свойств и его приемлемостью для обработки широкой гаммы конструкционных и инструментальных сталей и сплавов. Существует два метода твердофазного борирования — порошковый и металлотермической. Отличительной особенностью металлотермической смеси является изменение ее первоначального фазового и гранулометрического состава в процессе восстановления.

В работе [1] показано, что фазовый состав боридного слоя определяется главным образом видом борсодержащего вещества, а не массовой долей бора в насыщающей среде. Установлено, что для получения однофазного боридного слоя на железоуглеродистых сплавах в качестве основы насыщающей среды могут использоваться, например, следующие соединения: FeB, Ni₂B, MoB, WB.

Настоящая работа посвящена исследованию состава синтезированной алюмотермической порошковой среды для борирования, полученной в процессе самораспространяющегося высокотемпературного синтеза (СВС). В работе использовано термодинамическое моделирование (ТМ), которое применяют при исследовании СВС-процессов и разработке на его основе методов получения различных соединений и композиционных материалов. Целью ТМ является определение адиабатической температуры горения T_{ad} и оценка равновесного состава реагирующей системы при T_{ad} [2–4]. Результаты расчетов, основанные на использовании универсальной программы АСТРА с базой данных неорганических соединений [5, 6], являются предварительными данными, которые могут служить ос-

новой для более детального анализа механизмов формо- и структуроообразования.

Расчеты СВС-процесса были проведены для алюминотермических порошковых сред, состоящих из оксида бора, оксида алюминия, алюминия с добавлением и без добавки железа. Составы исходных смесей представлены в таблице. Исходя из диаграмм состояния [7–12] для составов ($B_2O_3+Al+Al_2O_3$) в результате алюмотермической реакции возможно образование соединений: AlB_{12} , AlB_2 , а при введении Fe могут сформироваться следующие фазы: AlB_{12} , AlB_2 , FeB, Fe2B, FeAl, FeAl₂, Fe2Al₃, FeAl₃.

Моделирование осуществляли путем проведения ряда пробных расчетов с последующим уточнением параметров. Расчет СВС-процесса выполняли в адиабатических условиях при постоянном давлении $P=0.98\cdot10^5$ Па. Вначале задавали исходные составы смесей и определяли адиабатическую температуру горения T_{ad} , затем рассчитанный равновесный состав сравнивали с бинарными и тройными диаграммами состояния [7–12] и уточняли, какие фазы (твердые и/или жидкие) устойчивы при данной температуре. При необходимости расчеты повторяли.

Далее моделировали охлаждение системы после СВС в изобарно-изотермических условиях ниже точек кристаллизации продуктов, которые имеются в жидком состоянии при T_{ad} . Это эквивалентно длительному отжигу продуктов синтеза при более низкой температуре. Такой расчет позволяет определить равновесный состав продуктов синтеза, образующихся при затвердевании расплава, присутствующего при $T = T_{ad}$. Основным источником тепловыделения в смесях (1–5) являются реакции $Al + B_2O_3 \rightarrow Al_2O_3 + B$, $Al + 2B \rightarrow AlB_2$ и $Al + 12B \rightarrow AlB_{12}$. Выделяющаяся теплота расходуется на нагрев и, возможно, частичное плавление получаемой композиции.

По данным термодинамического моделирования, адиабатическая температура взаимодействия для смеси 1 составляет 1412 К, что превышает температуры плавления алюминия ($T_m(Al) = 933$ К) и оксида бора ($T_m(B_2O_3) = 723$ К). Следовательно, в данной системе возможно протекание реакций в режиме CBC.

26 Таблица – Результаты термодинамического расчета равновесного состояния реагирующих систем при СВС-процессе и при охлаждении

Nº	Массовая доля ком- понентов смеси, %	<i>T_{ad}</i> , °K	Равновесное содержание конденсированных фаз при охлаждении после СВС, % масс.	Фазовый состав и тол- щина слоя, мкм		
				Общ.	FeB	Fe ₂ B
1	2	3	4	5	6	7
1	49B ₂ O ₃ +21Al+ +30Al ₂ O ₃	1412	$T = 723 \text{ K}$ $66,26\text{Al}_2\text{O}_{3(s)} + 23,89\text{B}_2\text{O}_{3(s)} + 9,18\text{AlB}_{12(s)} + 0,23\text{BN}_{(s)}$	110	_	110
2	42B ₂ O ₃ +28Al+ +30Al ₂ O ₃	1826	T = 723 K $78,4\text{Al}_2\text{O}_{3(s)} + 8,64\text{B}_2\text{O}_{3(s)} +$ $12,30\text{AlB}_{12(s)} + 0,23\text{BN}_{(s)}$	210	80	130
3	39B ₂ O ₃ +30Al+ +30Al ₂ O ₃	1952	$T = 723 \text{ K}$ $82,70\text{Al}_2\text{O}_{3(s)} + 3,31\text{B}_2\text{O}_{3(s)} + 13,32\text{AlB}_{12(s)} + 0,23\text{BN}_{(s)}$	230	100	130
4	35B ₂ O ₃ +35Al+ +30Al ₂ O ₃	2017	T = 723 K $80,86\text{Al}_2\text{O}_{3(s)} + 11,34\text{AlB}_{2(s)} +$ $6,97\text{AlB}_{12(s)} + 0,38\text{AlN}_{(s)}$	150	-	
5	28B ₂ O ₃ +42Al+ +30Al ₂ O ₃	1781	$T = 723 \text{ K}$ $70,65\text{Al}_2\text{O}_{3(s)} + 9,06\text{Al}_{(s)} +$ $19,45\text{AlB}_{2(s)} + 0,38\text{AlN}_{(s)}$	200	-	-

1	2	3	4	5	6	7
6	36B ₂ O ₃ +29Al+ +30Al ₂ O ₃ +5Fe	1980	T = 723 K $80,49\text{Al}_2\text{O}_{3(s)} + 11,67\text{AlB}_{12(s)} +$ $+5,94\text{FeB}_{(s)} + 24\text{B}_2\text{O}_{3(s)} + 0,23\text{BN}_{(s)}$	200	140	60
7	30B ₂ O ₃ +25Al+ +30Al ₂ O ₃ +15Fe	1976	T = 1253 K $73,57\text{Al}_2\text{O}_{3(s)} + 7,63\text{AlB}_{12(s)} +$ $+17,81\text{FeB}_{(s)} + 0,38\text{AlN}_{(s)} + 0,14\text{AlB}_{2(s)}$	225	125	100
8	25B ₂ O ₃ +19Al+ +30Al ₂ O ₃ +25Fe	1859	$T = 723$ ° $65,17Al_2O_{3(s)}+2,96AlB_{12(s)}+$ $+29,99FeB_{(s)}+1,2B_2O_{3(s)}+0,23BN_{(s)}$	200	75	125
9	22B ₂ O ₃ +17Al+ +30Al ₂ O ₃ +31Fe	1852	T = 723 K $61,48\text{Al}_2\text{O}_{3(s)}+0,75\text{AlB}_{12(s)}+$ $+36,82\text{FeB}_{(s)}+0,29\text{B}_2\text{O}_{3(s)}+0,23\text{BN}_{(s)}$	150	-	150
10	19B ₂ O ₃ +6Al+ +30Al ₂ O ₃ +35Fe	974	T = 723 K $45,67\text{Al}_2\text{O}_{3(s)} + 28,84\text{Fe}_2\text{B}_{(s)} + 12,1\text{Fe} +$ $+12,44\text{B}_2\text{O}_{3(s)} + 0,26\text{BN}_{(s)} + 0,64\text{FeCl}_{2(m)}$	75	-	75
11	14B ₂ O ₃ +11Al+ +30Al ₂ O ₃ +45Fe	1466	$T = 723 \text{ K:} $ $50,25\text{Al}_2\text{O}_{3(s)} + 48,18\text{Fe}_2\text{B}_{(s)} + 0,85\text{Fe}_{(s)} + 0,17\text{BN}_{(s)} + 0,14\text{A}$ $1\text{N}_{(s)}$	20	_	20

Примечание: При обработке из смесей 4 и 5 формируются диффузионные алитированные слои. Жирным шрифтом отмечены соединения, которые являются источниками атомов бора. Нижние индексы: (s) –твердая фаза, (m) – расплав.

В равновесных условиях при $T = T_{od}$ в смеси 1 образуются твердые продукты: Al_2O_3 , AlB_{12} и малое количество (0,23 %) ВN. Газовая фаза состоит в основном из водорода (парциальное давление $p = 7,66\cdot10^4$ Па), HCl (1,08·10⁴ Па), $AlCl_3$ (8,55·10³ Па), BCl_3 (8,4·10² Па), $BHCl_2$ (8,4·10² Па) и, в меньших количествах, из других газообразных соединений алюминия и бора с хлором, водородом и кислородом.

Для определения равновесного состава продуктов взаимодействия после охлаждения проведен расчет в изобарно-изотермических условиях при температуре ниже точки плавления B_2O_3 (723 K). Полученный состав незначительно отличается от высокотемпературного (при $T=T_{ad}$); некоторое изменение концентраций твердых фаз связано с изменением состава газовой фазы (поскольку при ТМ невозможно учесть уход газообразных продуктов взаимодействия в окружающую среду).

Таким образом, в данной системе возможно протекание СВС-процесса с адиабатической температурой, превышающей точки плавления B_2O_3 и алюминия. Основным продуктом взаимодействия, который может служить источником атомов бора при последующей химико-термической обработке (ХТО) стальных изделий в синтезированной порошковой среде, является AlB_{12} .

Аналогичные закономерности наблюдаются при ТМ смесей 2 и 3. Отличие от смеси 1 заключается в существенном возрастании адиабатической температуры СВС с повышением концентрации алюминия в исходной шихте: $T_{ad} = 1826$ К при 28 % Al (смесь 2) и $T_{ad} = 1952$ К при 30 % Al (смесь 3); качественный состав продуктов взаимодействия при T_{ad} и последующем охлаждении не изменяется.

Для смеси 4 при ТМ наблюдается несколько иная картина. При адиабатической температуре ($T_{od} = 2017$ K) в равновесных условиях образуются твердые Al_2O_3 и AlB_{12} , жидкий AlB_2 ($T_m = 1253$ K), а также малое количество AlN (\approx 0,4%); при этом конденсированный B_2O_3 отсутствует. Для анализа формирования равновесного фазового состава продуктов синтеза при последующем остывании проведен расчет в изобарно—изотермических условиях при T = 723 K < $T_m(AlB_2)$. Установлено, что содержание твердого AlB_2 несколько увеличилось (на \approx 0,5 %) за счет некоторого уменьшения доли AlB_{12} . Следовательно, при химико-термической обработке стальных изде-

лий в синтезированной смеси 4 источником атомов бора, диффундирующих в сталь, являются твердые фазы AlB_2 и AlB_{12} .

ТМ смеси 5 показало, что для нее адиабатическая температура горения (T_{ad} = 1781 °K) несколько снижается по сравнению со смесями 2-4, и при этой температуре имеются твердый оксид алюминия и расплав системы Al-B, состав которого можно выразить как 8,9% Al + 19,45% AlB₂. При охлаждении в результате кристаллизации расплава (расчет в изобарно-изотермических условиях при T = 723 °K) получаются твердые фазы: 9,06% Al_(s) + 19,45% AlB₂; некоторое увеличение концентрации алюминия связано с уменьшением его содержания в газовой фазе. В данной композиции при XTO единственным источником атомов бора является соединение AlB₂.

Таким образом, на основании проведенных расчетов установлено, что в результате СВС-процесса в синтезированных смесях 1-5 источниками атомов бора могут быть соединения AlB₁₂, и AlB₂. Для синтезированных смесей данной группы была проведена термодиффузионная обработка образцов из стали У8 при температуре 950 °C в течение 4 ч. Толщина образованных диффузионных слоев и их фазовый состав представлен в таблице. Уменьшение количества AlB₁₂ в синтезированной смеси сдвигает процесс насышения в сторону однофазного борирования, а при формировании в порошковой среде соединения AlB₂ идет процесс алитирования.

В дальнейшем проведено ТМ СВС-процессов порошковых сред для борирования, содержащих железо. Основным источником тепловыделения в смесях 6–11 являются реакции Al + $B_2O_3 \rightarrow Al_2O_3 + B$, Al + $2B \rightarrow AlB_2$, Al + $12B \rightarrow AlB_{12}$, Fe + $B \rightarrow FeB$, Fe + $2B \rightarrow Fe_2B$.

В смеси 6 рассчитанная адиабатическая температура СВС T_{ad} = 1980 °К превышает точку плавления фазы FeB (T_m = 1923 °К), и в равновесии при T_{ad} присутствуют твердый Al₂O₃ (80,5%), твердый AlB₁₂ (11,6%) и расплав FeB (5,9%), а также малое количество жидкого оксида бора B₂O₃ (0,76%) и твердого нитрида бора BN (0,23%). При охлаждении происходит кристаллизация фаз FeB и B₂O₃; некоторое увеличение доли оксида бора связано с изменением равновесного состава газовой атмосферы. Следовательно, в данной порошковой среде источником атомов бора при XTO являются бориды AlB₁₂ и FeB.

Для смеси 7 адиабатическая температура СВС близка к наблюдавшейся для смеси 6, близки также и фазовый состав с учетом того, что количество FeB почти в 3 раза больше, B_2O_3 отсутствует и появляется малое количество AlN. При охлаждении синтезированной среды ниже $T_m(AlB_2) = 1253$ К образуется AlB_{12} , FeB и малое количество AlB_2 (0,14%).

С увеличением концентрации железа и уменьшением доли алюминия в исходной шихте (смеси 8 и 9) величина T_{ad} несколько снижается (1859 К для смеси 8 и 1852 К для смеси 9), уменьшается равновесное содержание AlB_{12} и возрастает доля FeB, появляется также малое количество жидкого B_2O_3 , который кристаллизуется при температуре 723 К. Источником атомов бора при XTO в смесях 8-9 являются фазы FeB и AlB_{12} . В смеси 9 увеличение содержания FeB (36,82 %) и уменьшения количества AlB_{12} (0,75 %) приводит к переходу слоя двухфазного к однофазному.

В смеси 10 адиабатическая температура взаимодействия снижается до 974 K, что, однако, превышает температуру плавления B_2O_3 (T_m = 723 K) и алюминия (933 K), т.е. СВС возможен; гетерогенные реакции могут начаться после плавления оксида бора. Основным равновесным продуктом является фаза Fe_2B (28,8 %), при этом остается существенное количество не прореагировавшего твердого железа (12 %) и жидкого B_2O_3 (12,5 %); имеется также малое количество жидкого хлорида $FeCl_2$ (0,15 %). При последующем остывании продуктов взаимодействия происходит затвердевание B_2O_3 и $FeCl_2$; количество последнего несколько увеличивается (до 0,64 %) из-за изменения состава равновесной газовой фазы. Следовательно, в данном составе источником атомов бора при ХТО может быть только фаза Fe_2B .

Для смеси 11 величина T_{ad} возрастает до 1466 K, при этом равновесный состав продуктов при CBC включает твердую фазу FeB (26%), оставшееся твердое железо (22,8%) и следы BN и AlN; жидкий B_2O_3 отсутствует. Однако при более низких температурах термодинамически возможно образование соединения Fe_2B по твердофазной реакции $Fe_1B \rightarrow Fe_2B$. Поскольку в отсутствии расплава эта реакция может протекать только по механизму твердофазной диффузии, ее завершение возможно при весьма медленном охлаждении после завершения CBC. В данной смеси источником атомов бора при XTO будет соединение Fe_2B .

Исходя из приведенных результатов ТМ СВС-процессов в сме-

сях на основе оксида бора с добавками железа источниками атомов бора могу быть: AlB_{12} , FeB и Fe_2B . Обработка в этих смесях стали У8 при температуре 950 °C и выдержке 4 ч приводит к формированию однофазных и двухфазных боридных слоев. В двухфазном слое максимальная по толщине зона FeB формируется при самом высоком содержании $AlB_{12}-11,67$ % (смесь 6). В смеси 9 уменьшение количества AlB_{12} до 0,75 % при одновременном увеличении содержания FeB до 36,82 % приводит к переходу слоя от двухфазного к однофазному. Увеличение в смесях 10-11 количества железа приводит к образованию в синтезированной смеси соединения Fe_2B , что вызывает резкое снижение толщины однофазного боридного слоя.

В результате термодинамического моделирования с использованием программы АСТРА-4 определены адиабатические температуры СВС-процесса для систем, содержащих B_2O_3 в качестве восстанавливаемого оксида, алюминия в качестве восстановителя, инертную добавку Al_2O_3 и железо. Такие равновесные составы смесей при СВС при последующем охлаждении. Это позволило определить материалы и вещества, которые при последующем проведении ХТО в синтезированных порошковых смесях являются источниками атомов бора.

Литература

- 1. Получение и исследование свойств однофазных диффузионных покрытий/ Б. С. Кухарев [и др.]; Белорус. гос. политехн. акад. Минск, 1999. С. 8. Деп. в ВИНИТИ 14.01.00. №49—В00 // Указатель деп. рукописей 03.49В00.277.
- **2. Мержанов, А. Г.** Самораспространяющийся высокотемпературный синтез / А. Г. Мержанов // Физическая химия: современные проблемы / под ред. Я. М. Колотыркина. М.: Химия, 1983. С. 6-45.
- 3. Мержанов, А. Г. Научные основы, достижения и перспективы развития процессов твердопламенного горения / А. Г. Мержанов // Известия Акад. наук РАН. Сер. химич. наук. 1997. №. 1. с. 8–32.
- 4. Munir, Z. A. and Anselmi-Tamburini U. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combus-

- tion // Materials Science Reports. 1989. Vol. 3. N7/8. P. 277-365.
- **5. Применение** ЭВМ для термодинамических расчетов металлургических процессов / Г. Б.Синярев [и др.]. М.: Наука, 1982.
- **6.** Ватолин, Н. А. Термодинамическое моделирование металлургических процессов / Н.А. Ватолин, Г. К. Моисеев, Б. Г. Трусов. М.: Металлургия, 1994.
- 7. Кубашевски, О. Диаграммы состояния двойных систем на основе железа: справочник / О. Кубашевский; пер. с англ. М.: Металлургия, 1985. (English original: O.Kubaschevski. Iron-Binary Phase Diagrams. Springer-Verlag, Berlin, 1982.)
- 8. Диаграммы состояния двойных и многокомпонентных систем на основе железа: справочник / под ред. О. А. Банных, М. Е. Дрица. М.: Металлургия, 1986.
- **9. Хансен, М.** Структуры двойных сплавов / М. Хансен, К. Андерко. М.: Металлургиздат, 1962. Т. 1, 2.
- **10.** Эллиот, Р. П. Структуры двойных сплавов / Р. П. Эллиот. М.: Металлургия, 1968. Т. 1, 2.
- 11. Шанк, Ф. А. Структуры двойных сплавов / Ф. А. Шанк.- М.: Металлургия, 1973.
- 12. Massalski, T. B. Okamoto H., Subramanian P. R., Kacprzak L. editors. Binary Alloy Phase Diagrams, 2nd edition. ASM International, Metals Park, OH, 1990. Vol. 1, 2.

УДК 621.791.13

Г.М. СЕНЧЕНКО (БНТУ)

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ УДАРНО-СЖАТОГО ГАЗА ПРИ СВАРКЕ ВЗРЫВОМ

При изготовлении слоистых композиционных материалов методом сварки взрывом (СВ) газ, находящийся в сварочном зазоре, оказывает существенное влияние на процесс активации свариваемых поверхностей (ионизация газа, тепловое воздействие на свариваемые материалы) и создание равнопрочного по длине свариваемых заготовок соединения [1, 2]. При схлопывании свариваемых