УДК 625.72

Применение новых технологий при проектировании. Высоты SRTM, онлайн-карты, 3D-развёртки

Гатальский Р.К., Рак И.Е.

Белорусский национальный технический университет г. Минск, Беларусь

В данной статье рассмотрен способ получения высотных отметок Земли для использования этой информации в предпроектных решениях.

Введение

Оценка сложности предстоящих топографо-геодезических работ, планирование их проведения, визуализация дорожной сети и других объектов на интересующем участке еще до проведения топографических работ – это те проблемы, с которыми сталкиваются на стадии поиска предпроектных решений.

Для того чтобы получить высотные положения любого участка местности, необходимо иметь специальное разрешение и пройти длительное согласование, при соответствующем обосновании для каких целей вам это необходимо, что делает процесс изучения очень затянутым и трудоёмким. В настоящее время появились новые технологии, которые используются в странах СНГ, и по всему миру. Например:

- для построения достаточно точного ситуационного плана используются веб-карты, точные космоснимки, 3D-развертки;

- для построения виртуальной модели рельефа местности – высоты SRTM.

Получение высот SRTM. Загрузка веб-карт. Получение цифровой модели рельефа местности

SRTM (Shuttle radar topographic mission) – международная миссия по получению данных цифровой модели рельефа (ЦМР) территории Земли. Съёмка местности проводилась в феврале 2000 г. с борта космического корабля многоразового использования «Шаттл» с помощью радарной интерферометрической камеры и двух радиолокационных сенсоров SIR-C и X-SAR, установленных на борту корабля.

Высоты в файлах хранятся в виде «относительно уровня моря» (с учетом модели геоида EGM96) через 3" (в бинарном файле хранятся

участки размером 1°х1°, в файлах GEOTIFF – 5°х5°). Высоты SRTM могут быть использованы при выполнении проектных работ.

В проекте SRTM предусматривались следующие параметры точности модели рельефа при доверительном интервале 90% [1]:— абсолютная погрешность по высоте менее 16 м, а относительная погрешность — менее 10 м; — абсолютная погрешность в плане менее 20 м, а круговая относительная погрешность — менее 15 м.

Оценка фактической точности модели рельефа SRTM была выполнена сотрудниками Лаборатории реактивного движения (JetPropulsionLaboratory — JPL) NASA [1].

Согласно данным, приведенным в работе [2], фактические значения оказались точнее (табл. 1).

Таблица 1

Таблица 1	Африка	Австралия	Евразия	Острова	Северн. Америка	Южная Америка			
					тысрика	тысрика			
Абсолют-	11,9	7,2	8,8	9,0	12,6	9,0			
ная									
погреш-									
ность в									
плане									
Абсолют-	5,6	6,0	6,2	8,0	9,0	6,2			
ная									
погреш-									
ность по									
высоте									
Относи-	9,8	4,7	8,7	6,2	7,0	5,5			
тельная									
погреш-									
ность по									
высоте									

Примечание. Все значения погрешностей приведены в метрах при доверительном интервале 90%.

Данные экспериментальных исследований точности высот SRTM на территорию Беларуси, авторами в открытых источниках найдено не было. Ближайшая территория, на которой исследования были произведены территория юго-западной части Ленинградской области [1]. При выполнении исследований на основе точек SRTM была построена цифровая модель рельефа, которая далее была использована ЛЛЯ построения профилей. Полученные профиля сравнивались И анализировались с одноименными профилями в Балтийской системе высот 1977 г., построенными по данным топографической съемки масштаба 1:2000 и сечением рельефа через 0,5 м (выполненной при инженерных изысканиях для проектирования воздушной линии электропередачи мощностью 330 кВт.). Общая протяженность профилей по трассе составила порядка 80 км. Сравнение двух профилей позволило сделать статистический анализ отклонений высот: минимальное отклонение составило 1,1 м; максимальное отклонение — 24,1 м; среднее отклонение (CO) — 12,8 м; среднее квадратическое отклонение (СКО) — 4,0 м.

Дальнейшие исследования и анализ СО и СКО позволили сделать вывод.

Абсолютная погрешность [1] высот SRTM для доверительного интервала 68% составила 4,0 м, а для доверительного интервала 95% — 8,0 м, что соответствует заявленным NASA[2]величинам для Евразии (таблица 1).

В программе КРЕДО ТРАНСКОР 3 [3] реализован импорт высот SRTM.

Для выполнения импорта в проект необходимо в Таблице точек 1 установить систему координат WGS-84 (геодезическая) и выбрать команду **Файл/Таблица точек 1/Импорт высот SRTM.** Для последующего пересчета координат, найденных точек, из геодезической СК в плоскую СК в Таблице точек 2 необходимо установить систему координат **Национальные/(СК95 или СК42)/(1995 или1942)** и указывать зону, в которой находится объект в проекции TransverseMercator. Беларусь находится в 4-6 зонах.

В открывшемся окне **Импорт SRTM** ввести координаты, являющиеся границами участка с севера, юга, востока и запада (рис. 1) и выполнить импорт.

Импортированные точки должны отобразиться в графическом окне. После импорта с помощью команды **Расчёт** конвертируем точки из STRM в выбранную плоскую систему координат. Выбрав команду **Файл/Таблица точек 2/Экспорт в формат ТХТ**, можно выполнить экспорт найденных точек в текстовый файл. Далее этот файл может быть импортирован в программу КРЕДО ДОРОГИ и использован для создания цифровой модели рельефа.

Возможность подгрузки веб-карты из источника *GoogleMaps* [4] позволяет совместить изображение местности на заданном участке с импортированными точками.

🖨 Новый проект 1* - КРЕДО ТРАНСКОР	the second se	A CONTRACTOR OF
райл Правка Вид Операции Оформлени	е Ведомости Чертежи Окно	
T 🖆 🔚 \land 🥐 🖻 🛍 🗶 🗶 🖳	📲 🖷 📻 1:1000 🔍 🕐 😔 🦢 📥 🔟 🖄 📓 🎯 💿	🗞 🖂 🖉 🖉 🗸 ଅ 🖉 🚩 🗶 🕇 🏅
🔊 Точки трансформации	расчёт	
(wcs-89) 🕾 🛪 🦗 🏦 🎟 💥	199	95 зона 5,)हр 🗡 🏦 🎞 💥
имя В, *** L, ***	Не, м Нп, м ζт, м ζf, м	имя N, м E, м Hr
Выбор системы координат - КРЕДО ТРАНСКОР	Buf	ор системы координат - КРЕДО ТРАНСКОР
 Геодезические СК WGS-84 (G1359) ПЗ-90 Г ПЗ-90 Г Пз-90 Г Паз-00 Г Паз-00 Г Параметр Значение имя WGS-84 	VAunopr SRTM - KPEAO TPAHCKOP Vuacrok isenopra <u>Genep 50°1500,00° Bocrok Provenski dopina 27°200,00° Ko S0°0700,00° Ko Koopgatinattia ciboli</u>	т теодезические СК теодетирические СК Национальные СК35 1005 30:06 5 такито Значение окции Таплочая Mercator
эллипсоид WGS 1984	Настройки) не меняем! Выставляем, по Адрес двоичный формат https://dds.cr.usgs.gov/srtm/version1/Eurasia/ орнентируемся!	1995 ЗОНА 5 м СК-95 (ГОСТ 32453-2017) ппсоид Krassovsky 1940 ~
	Адрес формат geobff https://gis-lab.info/data/srtm-tif/ Ш Молос зовать сли в во соличение филоа	ОК Отмена
+	Закрыть	+

Рис. 1 – Получение высот SRTM в ТРАНСКОР 3

Для загрузки веб-карты в проект программы КРЕДО ДОРОГИ необходимо установить систему координат. Для этого выбрать: Установки/Свойства набора проекта/Система координат/(1995 или 1942)/ и т.д. Далее Данные/Космоснимки/справа (Импорт космоснимка). В открывшемся окне можно выбирать любой удобный спутник и можно указать любое место на Земном шаре (а можно указать и координаты, объекты привязки) (рис. 2).

Данные	Правка	Вид Установ	ки Постр	рения I	Поверхное	ть Ситу	ация Д	Цорога	Съезды	Размеры
1 🗅 💕		🥐 📋 🚺	🕈 🛱 🔐	R R	<u>♀ <u></u>♀</u>	🍟 🔀 .	P, P	: Dm @	% x -	% /4 /x
i 🔍 🖨	1 2 2	C 🔿 🗙 ð	- 17 12	1	×:	<u>×</u> <u>×</u> <u>×</u>	1 🗚 6	a : -	₩ 🏛	- €
ŧ/ — ŧ.; Q. ŧ. ↔	+		+	Параметры	аметры ГР н П + Х	} ↔	⊕ k₀	l≩ _τ <u>∞</u>	†+ 🌶	x
···· 5*	Космосни	мки								×
1	Предварительный просмотр снимка Google Maps спутн ▼									
1										
•										
à	10000			1	1	N.F		No.	100	

Рис. 2 – Загрузка веб-карты

Для импорта текстового файла с координатами и высотами точек, которые были импортированы из программы ТРАНСКОР, необходимо выбрать Меню/Данные/Импорт данных в проект (указываем путь к файлу .txt) (рис. 3).

Рис. 3 – Импорт высот в проект

Импортированные точки используются для создания поверхности на участке, а информация веб-карты используется для создания цифровой модели ситуации.

Вывод

Данные исследований позволяют сделать заключение, что высоты SRTM могут быть использованы для грубой оценки рельефа в качестве оперативной оценки крупных форм рельефа в районе работ до начала проведения инженерно-геодезических изысканий, когда, не имея точных изыскательских данных, на этих высотах можно отработать методы построения плана и рельефа.

Список использованной литературы

[1] Трофимов А.А., Филиппова А.В. Оценка точности матрицы высот SRTM по материалам топографических съемок // Геопрофи, 6, 2014.

[2] Rodriguez E., Morris C.S., BelzJ.E., Chapin E.C., Martin J.M., DafferW., Hensley S. An assessment of TheSRTM Topographic Product // Technical Report JPL D_31639, Jet Propulsion Laboratory.

[3] <u>https://credo-dialogue.ru/uchastniki-konsortsiuma/sp-kredo-dialog-ooo-minsk.html</u> – Дата доступа: 31.03.2019.

[4] <u>https://www.google.com/maps/</u> – Дата доступа: 31.03.2019.