1.5-1.6 мкм. Схема уровней и переходов между ними, учитываемых в математической модели, представлены на рисунке 2.

Рисунок 2 – Схема энергетических уровней и переходов между ними, рассматриваемых в модели с учетом ап-конверсионного перехода в области 980 нм

Рисунок 3 – Результаты расчета зависимости выходной мощности от поглощенной мощности накачки лазера на кристалле Er(2 ат.%):КҮW с учетом ап-конверсионного перехода в области

Рисунок 4 – Зависимость выходной мощности лазера на кристалле Er(1 ат.%):КҮW от поглощенной мощности накачки

По результатам моделирования определено, что для коэффициента ап-конверсии равного 1,0*10⁻¹⁷см⁻³ наблюдается хорошее соответствие экспериментальных данных и результатов моде-

УДК 621.372.821.1

лирования для всех выходных зеркал как по порогам генерации, так и по значениям дифференциальной эффективности по поглощенной мощности накачки. Результаты моделирования для выходного зеркала с пропусканием 2 % в сравнении с экспериментальными данными показаны на рисунке 3.

С целью определения условий для повышения выходной мощности лазера на кристалле Er:KYW проведены эксперименты с кристаллом с вдвое уменьшенным содержанием ионов $Er^{3+}(0.5 \text{ at.}\%)$. В результате уменьшения содержания ионовактиваторов Er³⁺ в кристалле Er:КҮW удалось увеличить максимальную выходную мощность и дифференциальную эффективность по поглощенной мощности накачки лазера до 118 мВт и 53 %, соответственно. При этом порог генерации для зеркал с пропусканием 1 % и 2 % понизился до уровня 75 мВт и 120 мВт, соответственно. Длина волны генерации и поляризация излучения соответствовали случаю использования кристалла с концентрацией ионов эрбия 2 ат.%. По результатам моделирования для кристалла Er(1 ат.%):КҮШ с учетом определенного ранее коэффициента ап-конверсии наблюдается достаточно хорошее соответствие экспериментальных и теоретических данных. На рисунке 4 показана расчетная зависимость для выходного зеркала с пропусканием 2 %.

Генерационные характеристики лазера на кристалле Er(1 ат.%):КҮШ представлены в таблице 1.

Er(1 at.%):KYW						
Пропус- кание выход- ного зеркала, %	Дифферен- циальная эффектив- ность, %	Выходная мощность, мВт	Длина волны генераци и, нм			
1	51	114				
2	53	118	1609			
3	48	110				

Таблица 1 – Генерационные характеристки кристалла Er(1 ат.%):КҮШ

Литература

1. In-band pumped room-temperature $Er:KY(WO4)_2$ laser emitting near 1.6 μm / K.N. Gorbachenya, V.E. Kisel, A.S. Yasukevich, A.A. Pavlyuk, and N.V. Kuleshov // Laser Phys. - 2013. - Vol. 23. 125005.

ПАРАМЕТРЫ ПЕРЕНОСА ЭНЕРГИИ МЕЖДУ ИОНАМИ ТУЛИЯ В КРИСТАЛЛАХ ВОЛЬФРАМАТОВ И МОЛИБДАТОВ Гусакова Н.В.¹, Ясюкевич А.С.¹, Павлюк А.А.²,Кулешов Н.В.¹

¹НИЦ Оптических материалов и технологий БНТУ Минск, Республика Беларусь ²Институт неорганической химии имени А.В. Николаева, СО РАН Новосибирск, Российская Федерация

Несмотря на многочисленные работы, посвященные спектроскопическим и генерационным характеристикам кристаллов молибдатов и вольфраматов активированных ионами тулия, исследование влияния концентрации ионов Tm³⁺ в данных матрицах остается актуальной задачей.

Кристаллы вольфраматов и молибдатов с ионами тулия характеризуются высокими значениями сечений поглощения в области 800 нм и стимулированного испускания в области 1.9 мкм, что делает их перспективными лазерными средами для создания компактных лазерных систем. Кроме того, разупорядоченная структура кристаллов молибдатов обуславливает широкие слабоструктурированные полосы в спектрах усиления, что является перспективным для лазеров, работающих в режиме синхронизации мод.

Ион Tm³⁺ характеризуется развитой структурой уровней, обуславливающей наличие ряда кооперативных процессов. При накачке лазерными диодами в области 800 нм, одним из основных механизмов заселяющих верхний лазерный уровень ${}^{3}F_{4}$ является процесс кросс-релаксации ${}^{3}H_{4}+{}^{3}H_{6} \rightarrow {}^{3}F_{4}$, ${}^{3}F_{4}$. Поэтому определение и учет параметров переноса энергии, является необходимым при математическом моделировании таких систем.

Рисунок 1 – Кинетики затухания люминесценции ³H₄ → ³F₄ (*a*) Tm:KLuW; (*б*) Tm:KYW (*в*) Tm:NBM с различным содержанием ионов тулия, при возбуждении в области 800 нм

В настоящей работе исследованы кристаллы KY(WO₄)₂ (KYW), KLu(WO₄)₂ (KLuW) и NaBi(MoO₄)₂ (NBM) с различной концентрацией ионов тулия. Для кристаллов с низким содержанием тулия Tm(0.7 ат.%):NBM Tm(0.2 ат.%):КҮШ кинетики затухания люминесценции с уровня ³Н₄ аппроксимируются моноэкспоненциальной зависимостью с постоянными времени 170 мкс и 190 мкс, соответственно (рис 1). Для остальных образцов наблюдается сокращение времени жизни состояния ³Н₄ обусловленное процессом кросс-релаксации. Определение параметра кросс-релаксации (СрА), в данных матрицах, осуществлялось на основе анализа кинетик затухания люминесценции ³Н₄→³F₄ с использованием уравнения Инокути-Хираяма [1] Данный анализ показал наличие диполь-дипольного механизма передачи энергии возбуждения между ионами тулия в исследуемых матрицах, при концентрациях выше 2 ат.%. С ростом концентрации ионов тулия (более 3 ат.%) в кристаллах KLuW и КҮШ наблюдается сокращение времени жизни уровня ³F₄ обусловленное миграцией энергии между ионами тулия. Для определения параметров переноса C_{DD}, определяющих миграцию возбуждения между состояниями ${}^{3}\text{H}_{4}$ и ${}^{3}\text{H}_{6}$ в кристаллах вольфраматов, была применена теория Декстера [2]. Микро-параметры переноса энергии С_{DD} и С_{DA}, исследуемых кристаллов представлены в таблице 1.

Рисунок 2 – Выходные характеристики микрочип лазеров в зависимости от падающей мощности накачки, на основе кристаллов Tm:KYW (*a*) и Tm:KLuW (*δ*): точки - экспериментальные данные, линии – математическое моделирование с учетом процесса кросс-релаксации

Таблица 1 – Параметры	переноса	энергии	кристаллов
Tm:KLuW и Tm:KYW			

Кристалл	С _{DA} , 10 ⁻³⁸ см ⁶ /с	С _{DD} (³ Н4), 10 ⁻³⁸ см ⁶ /с	С _{DD} (³ F ₄), 10 ⁻³⁸ см ⁶ /с
Tm:KLuW	1.54	5.49	8.29
Tm:KYW	1.39	3.41	8.29
Tm:NBM	7.03	-	-

Значение параметра переноса опреде-ляющего кросс-релаксацию (С_{DA}) для кристалла Tm:KLuW близко к результату полученному в работе [3].

Полученные параметры для кристаллов Tm:KYW и Tm:KLuW были использованы при математическом моделировании лазеров на основе системы балансных уравнений, учитывающей процесс кросс-релаксации. Результаты моделирования хорошо согласуются с экспериментальными данными (рис. 2.).

Литература

1. Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence / M. Inokuti, F. Hirayama // J. of Chem. Phys. – 1965 – Vol. 43. – P. 1978–1989.

2. A theory of Sensitized Luminescence in Solids/ D.L. Dexter // J. of Chem. Phys. – 1953. – Vol. 21. – P. 836–850.

3. Thulium doped monoclinic $KLu(WO_4)_2$ single crystals: growth and spectroscopy / O. Silvestre / Appl. Phys. B - 2007. - Vol. 87. - P. 707-716.

УДК 621.315.592

КОНТРОЛЬ ПРОЦЕССА МОДИФИКАЦИИ ИОННОЙ ИМПЛАНТАЦИЕЙ ПЛЕНОК ПОЛИЭТИЛЕНТЕРЕФТАЛАТА МЕТОДАМИ ЭПР, ЛЮМИНЕСЦЕНЦИИ И РЭМ Олешкевич А.Н.¹, Оджаев В.Б.¹, Мудрый А.В.², Сернов С.П.³, Самбуу Мунхцэцэг⁴, Лапчук Т.М.¹, Лапчук Н.М.¹

¹Белорусский государственный университет Минск, Республика Беларусь

²Государственное научно-производственное объединение «Научно-практический центр НАН Беларуси

по материаловедению»

Минск, Республика Беларусь ³Белорусский национальный технический университет

Минск, Республика Беларусь

⁴National University of Mongolia

Ulaanbaatar, Mongolia

Среди разнообразных способов модификации полимеров наиболее перспективным в практическом и фундаментальном направлении является обработка их поверхности. Исследование процессов трансформации структуры поверхностного и переходного слоев полимера в процессе модификации позволит разрабатывать технологии получения качественно новых материалов с улучшенными физико-химическими и эксплуатационными свойствами.

В качестве исследуемых образцов использовался полимер – полиэтилентерефталат (ПЭТФ), модифицированный методом ионной имплантации. Преимуществом данной технологии является контролируемое и точно дозируемое количество введённой примеси, использование высокотехнологичного, производительного стандартного оборудования. Целью работы было комплексное исследование трансформации поверхности пленок ПЭТФ в процессе имплантации в них ионов различной природы с одинаковыми энергиями и дозаи. Исследования проводились с использованием метода электронного парамагнитного резонанса, люминесценции и растровой электронной микроскопии.

Объектом исследования были пленки полиэтилентерефталата (ПЭТФ) (C₁₆H₈O₄)_n толщиной 50 мкм, исходные и имплантированные ионами

фосфора и сурьмы с энергией 60 кэВ в диапазоне доз 100-2000 мкКл/см². Выбор параметров имплантации и вида ионов определялся, главным образом, использованием разработанных технологических операций для интегральной схемотехники. Спектры ЭПР имплантированных пленок регистрировались на спектрометре «RadioPan SE/X-2543» с резонатором H₁₀₂ в Х-диапазоне при комнатной температуре. Максимальная мощность сверхвысокочастотного (СВЧ) излучения в резонаторе – 200 мВт. Частота СВЧ излучения в резонаторе контролировалась частотомером, поляризующее магнитное поле – датчиком ядерного магнитного резонанса. Для контроля добротности измерительного резонатора, настройки фазы модуляции магнитного поля и калибровки магнитной компоненты СВЧ излучения использовался кристалл рубина, закрепленный на стенке резонатора. Эксперименты по люминесценции проводились с использованием в качестве источника возбуждения лазера с длиной волны 325 нм. Структурные исследования полимерных пленок проводились на растровом электронном микроскопе S-4800 (Hitachi) с использованием энергодисперсного рентгеновского микроанализатора с XFlash детектором Quantex 200. Разрешение составляет 1 нм

Особенность имплантации ионов сурьмы в пленки полиэтилентерефталата по результатам