УДК 539.264

СПЕКТРОСКОПИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЛИТИЙ-АЛЮМОСИЛИКАТНОЙ СТЕКЛОКЕРАМИКИ С НАНОРАЗМЕРНЫМИ КРИСТАЛЛАМИ ОРТОНИОБАТОВ, АКТИВИРОВАННЫМИ ИОНАМИ ТУЛИЯ Юхновская А.В.¹, Вилейшикова Е.В.¹, Лойко П.А.², Дымшиц О.С.³, Маляревич А.М.¹, Юмашев К.В.¹

¹Белорусский национальный технический университет Минск, Республика Беларусь ²ФГАОУ ВО «Национальный исследовательский университет ИТМО» Санкт-Петербург, Российская Федерация ³Государственный оптический институт имени С. И. Вавилова Санкт-Петербург, Российская Федерация

Кристаллы редкоземельных ортониобатов (RENbO₄, RE= La-Lu, Y) подвержены обратимому фазовому переходу между их высокотемпературной фазой со структурой шеелита CaWO4 (тетрагональная Т-фаза, пр.гр. I41/а) и низкотемпературной фазой, изоструктурной минералу фергусониту (R)(Nb,Ta)O4 (моноклинная М-фаза, I2/a). Обратимый переход между М и Т-фазами происходит при 500-800 °С. Исследования стеклокерамики с нанокристаллами (Er,Yb)NbO4, Eu,Yb:YNbO4 выявили улучшение эффективности возбуждения люминесценции RE ионов после выделения М-фазы. Данный переход носит непрерывный характер, сопровождается быстрой перестройкой структуры с существенной деформацией элементарной ячейки, которая наводит случайные микронапряжения в кристаллической матрице [1]. В случае Т-фазы ион-активатор координируется позиции с точечной симметрией S₄, и в случае моноклинной фазы в позиции симметрии С2. На рисунке й приведены схемы элементарных ячеек данных кристаллов.

Рисунок 1 – Структура кристаллической ячейки Т- (слева) и М-фазы (справа) YNbO4

В предыдущих работах было показано, что наноразмерные кристаллы RENbO₄ (RE=Y, Yb, Eu) литий-алюмосиликатной стеклокерамики испытывают структурную перестройку T-фазы в М-фазу при термообработке стекла, содержащего в объеме аморфной стекломассы тетрагональные нанокристаллы RENbO₄, при T = 900°C. В настоящей работе представлены результаты исследования спектроскопических характеристик ионов гольмия Tm³⁺ в наноструктурированной стеклокерамике, содержащей тетрагональную T- и моноклинную M-фазу Tm³⁺:YNbO₄.

Стеклокерамики были синтезированы и их структура исследована сотрудниками НИТИОМ

ВНЦ «ГОИ им. С.И. Вавилова». Исходное стекло системы 18 (мол.%) Li₂O – 27 Al₂O₃ – 55 SiO₂ [2], активированное редкоземельными оксидами, 2.2 мол.% Y₂O₃, 0.5 мол.% Tm₂O₃ и оксидом ниобия, 3.7 мол.% Nb₂O₅ в качестве катализатора кристаллизации, приготовлено в тигле из кварцевой керамики при T = 1580 ° C в течение 4 ч. Варка стекла сопровождалась перемешиванием расплава. С целью удаления OH-групп в процессе варки стекломасса барботировалась кислородом на протяжении 0.5 ч. После варки стекломасса была вылита на металлическую плиту и подвергнута отжигу при температуре T = 620 °C. Далее отожженное стекло инерционно охлаждалось до комнатной температуры.

Для синтеза стеклокерамики исходное стекло было подвержено вторичной термической обработке при температурах от T = 720 до 1000°С в течение 6–24 ч на воздухе, с последующим инерционным остыванием до комнатной температуры. При термообработке кристаллизация фазы ортониобатов YNbO4 сопровождается объемной кристаллизацией основной фазы – твердых растворов со структурой β-кварца и β-сподумена. Термообработка при температурах T > 800°С приводит к кристаллизации тетрагональной шеелитоподобной T-фазы Tm:YNbO4, а при увеличении температуры до 900°С в рентгенограммах наблюдаются пики, относящиеся к моноклинной M-фазе Tm:YNbO4.

На рисунках 2-3 приведены спектры оптического поглощения исходного и термообработанных образцов стеклокерамики. Ион Tm³⁺ обладает системой электронных состояний ¹G₄, ³F_J и ³H_J с энергиями до 25000 см⁻¹, с основным состоянием ³Н₆ и метастабильным ³F₄. Полосы поглощения, наблюдаемые в спектрах, связанны с переходами ионов Tm³⁺ из основного уровня ³H₆ на вышележащие состояния. Интерпретация полос поглощения приведена на рисунке. Спектры поглощения стекол сушественно изменяются после их термической обработки: полосы поглощения структурируются, а их центр тяжести смещается в длинноволновую сторону спектра. Происходящие изменения вызваны изменением кристаллического силы и симметрии окружения примесного иона

 Tm^{3+} при вхождении его в кристаллическую фазу $YNbO_4$. Аналогичные изменения прослеживаются и в спектрах поглощения иона Yb^{3+} , на основании чего сделано заключение о вхождении ионов Yb^{3+} в нанокристаллы $YNbO_4$. Эти результаты подтверждаются данными рентгенофазового анализа термообработанных стекол.

Наиболее интенсивно ион Tm³⁺ поглощает в области 715–820 нм (переход ³H₆→³H₄), рисунок 2, и 1.6–1.9 мкм (³H₆ → ³F₄), рисунок 3. Первая полоса обычно используется для возбуждения ионов Tm³⁺ при помощи AlGaAs лазерных диодов.

Рисунок 3 – Спектры оптического поглощения исходного и термообработанного стекла

Рисунок 4 – Спектры оптического поглощения исходного и термообработанного стекла

Для определения вероятностных характеристик переходов было проведено моделирование наблюдаемых переходов в спектрах в рамках модели Джадда-Офельта. Для исходного стекла параметры интенсивности составляют $\Omega_2 = 6.249 \ 10^{-20} \text{ см}^2$, $\Omega_4 = 2.099 \ 10^{-20} \text{ см}^2$ и $\Omega_6 =$ =1.323 10^{-20} см^2 . При кристаллизации моноклинной фазы параметры интенсивности существенно изменяются: $\Omega_2 = 7.331 \ 10^{-20} \text{ см}^2$, $\Omega_4 = 3.047 \ 10^{-20} \text{ см}^2$ и $\Omega_6 = 2.116 \ 10^{-20} \text{ см}^2$. Это приводит к увеличению вероятностей радиационных переходов A_{JJ} . Вероятностные характеристики наиболее Результаты моделирования приведены в таблицах 1 и 2.

На основе наилучших значений параметров $\Omega_{2,4,6}$ были рассчитаны радиационные времена жизни возбужденных состояний иона Tm^{3+} . Время жизни первого возбужденного состояния в

исходном стекле составило 3.022 мс, в стеклокерамике с выделившейся кристаллической фазой радиационное время жизни уменьшилось до 2.498 мс. Это соответствует квантовому выходу люминесценции в этом канале ~20 % в обоих случаях. Времена жизни всех состояний испытывают закономерное уменьшение при кристаллизации моноклинной фазы в стеклокерамике. Так, время жизни состояния ${}^{3}\text{H}_{5}$ в стекле τ_{rad} =2.553 мс, а в стеклокерамике составляет 1.892 мс. В стекле время жизни состояния ³Н₄ составляет 0.503 мс, а в стеклокерамике 0.383 мс. В стеклокерамике, таким образом обнаруживается "затягивание" затухания люминесценции, поскольку экспериментальное время жизни этого состояния близко к значению 2 мс. Для термически связанных состояний ${}^{3}F_{2}$ и ${}^{3}F_{3}$ время жизни $\tau_{rad}=0.319$ мс в исходном стекле и $\tau_{rad}=0.219$ мс – в стеклокерамике с моноклинной фазой ортониобатов. Время жизни высокоэнергетического состояния ¹G₄ сокращаются с 0.25 мс (для исходного стекла) до 0.19 мс (для стеклокерамики).

Таблица 1 — Силы осцилляторов переходов ионов Tm^{3+} в поглощении в исходном стекле

Переход	$f_{ m exp}^{\it ed}$ 106	$f_{\it calc}^{\it ed}$ 106
$^{3}F_{4}$	3.645	3.641
³ H5	1.851	2.042
$^{3}\text{H}_{4}$	4.054	3.951
${}^{3}F_{3}, {}^{3}F_{2}$	3.461	3.288
$^{1}G_{4}$	1.547	1.474
RMS 10 ⁶	0.082	

Таблица 2 – Силы осцилляторов переходов ионов Tm³⁺ в поглощении в стеклокерамикой с М-фазой ортониобатов

Переход	$f^{\it ed}_{ m exp}$ 106	$f_{\it calc}^{\it ed}$ 106
${}^{3}F_{4}$	4.021	4.013
³ H ₅	2.229	2.531
$^{3}\text{H}_{4}$	4.721	4.561
${}^{3}F_{3}$, ${}^{3}F_{2}$	4.647	4.376
$^{1}G_{4}$	1.657	1.595
RMS 10 ⁶	0.194	

В целом, полученные результаты хорошо согласуются со структурными преобразованиями, протекающими в стеклокерамике в процессе ее синтеза. Дальнейшие исследования будут направлены на определение возможности соактивации стеклокеармики ионами Tm³⁺ и Ho³⁺ и оценке перспектив данных материалов как лазерных активных сред и люминофоров.

Литература

1. Sarin P. [et.al.], "High-Temperature Properties and Ferroelastic Phase Transitions in Rare-Earth Niobates (LnNbO₄)" // J. Am. Cer. Soc. – 2014 – Vol. 10., p. 3307–3319. 2. Loiko P.A. [et.al.] "Transparent glass-ceramics with (Eu³⁺, Yb³⁺): YNbO₄ nanocrystals: crystallization,

structure, optical spectroscopy and cooperative upconversion" // J. Lum. – 2016 – Vol. 179, p. 64–73.

УДК 535.34, 535.37 АП-КОНВЕРСИОННАЯ ЛЮМИНЕСЦЕНЦИЯ ИОНОВ ТУЛИЯ БЛИЖНЕЙ ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА, ВОЗБУЖДАЕМАЯ В ЛИТИЙ-АЛЮМОСИЛИКАТНОЙ СТЕКЛОКЕРАМИКЕ С НАНОКРИСТАЛЛАМИ ОРТОНИОБАТОВ ТУЛИЯ И ИТТЕРБИЯ Юхновская А.В.¹, Вилейшикова Е.В.¹, Лойко П.А.², Дымшиц О.С.³, Маляревич А.М.¹, Юмашев К.В.¹

¹Белорусский национальный технический университет Минск, Беларусь ²ФГАОУ ВО «Национальный исследовательский университет ИТМО» Санкт-Петербург, Российская Федерация ³Государственный Оптический Институт им С. И. Вавилова Санкт-Петербург, Российская Федерация

ап-конверсионное преоб-Как правило, разование в стеклокристаллических материалах, соактивированных ионами Yb^{3+} и Ln^{3+} (Ln = Eu, Er, Tm, Ho), протекает через последовательную сенсибилизацию совместно с кооперативными процессами переноса энергии от ионов Yb³⁺ к ионам Ln³⁺. В случае ионов Tm³⁺ в спектрах АКЛ обычно присутствует две относительно интенсивные полосы, соответствующие переходам ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ (475 нм) и ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ (800 нм). Соотношение интенсивностей АКЛ синей спектральной области и ближнего ИК диапазона зависит от конценцентрации активаторов, времени жизни состояния ¹G₄ и эффективности заселения состояния ³H₆ в результате переноса энергии Yb³⁺→Tm³⁺. В некоторых низкосимметричных кристаллах наблюдается существенное подавление по интенсивности полосы в области 475 нм [1,2], в результате чего спектр АКЛ полностью смещается в ближнюю ИК область. Возможность ап-конверсионного преобразования из ближней ИК области в ближнюю ИК область спектра используется в системах визуализации при исследовании биологических тканей, а также в приложениях фотовольтаики, для увеличения эффективности солнечных батарей. В настоящей работе представлены результаты исследования ап-конверсионной люминесценции стеклокерамики, содержащей тетрагональную и моноклинную фазу кристаллов ортониобатов Tm³⁺,Yb³⁺:YNbO₄. Ранее [3] было показано, что наноразмерные кристаллы RENbO4 (RE=Y, Yb, Eu) литий-алюмосиликатной стеклокерамики испытывают структурную перестройку тетрагональной Т-фазы в моноклинную М-фазу при термообработке стекла, содержащего тетрагональные нанокристаллы RENbO₄, при $T = 900^{\circ}$ C.

Ап-конверсионная люминесценция в образцах возбуждалась излучением лазерного диода с длиной волны 960 нм. Спектры ап-конверсионной люминесценции образцов стекла и стеклокерамики, активированных ионами эрбия, представлены на рисунке 3.13. В спектре можно выделить соответствующие две полосы, переходам ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ (475 нм), ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ (800 нм). Вид полос люминесценции стекла и стеклокерамики значительно отличается. Кроме существенного структурирования спектра стеклокерамики, подтверждающего выделение нанокристаллической фазы в материале, изменяется соотношение интенсивностей полос. Наиболее интенсивная полоса люминесценции стекла соответствует переходу ${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{H}_{6}$ и лежит в красной области спектра. Общий цвет свечения образцов, таким образом, смещается от зеленого к красному.

Рисунок 1 – Спектры ап-конверсионной люминесценции (АКЛ) исходного стекла и стеклокерамики

Ап-конверсионная люминесценция исходного стекла, активированного ионами тулия Tm^{3+} и иттербия Yb^{3+} имела сиренево-голубой цвет. В спектре АКЛ, рис. 2., имеется два пика на длинах волн 650 и 800 нм, связанных с переходами ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ и ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ соответственно.

Установление процессов, приводящих к испусканию ап-конверсионной люминесценции, осуществляется исходя из сопоставления значений энергии возбужденных состояний ионов и энергии фотонов возбуждения. Также имеет значение энергия фононов E_{ϕ} матрицы материала: если разность энергии между соседними энергетическими состояниями иона ΔE меньше $2 \div 4 E_{\phi}$, то более вероятен процесс безызлучательной пе-