2. Ortega, S. Use of Hyperspectral/Multispectral Imaging in Gastroenterology. Shedding Some-Different-Light into the Dark / S. Ortega, H. Fabelo, D.K. Iakovidis, A. Koulaouzidis, G.M. Callico // J. Clin. Med. - 2019. -Vol. 8, no. 1. – P. 36–56.

3. Strauch, M. Wide-angle spectral imaging using a Fabry-Pérot interferometer / M. Strauch, I.L. Livshits, F. Bociort, H.P. Urbach // J. Eur. Opt. Soc.-Rapid. - 2015. -Vol. 10. - P. 15037-1-15037-7.

УДК 621.3.038.825.2

ПАРАМЕТР СПЕКТРОСКОПИЧЕСКОГО КАЧЕСТВА НЕОДИМСОДЕРЖАЩИХ КРИСТАЛЛОВ ДВОЙНЫХ КАЛЬЦИЕВЫХ ВАНАДАТОВ Демеш М.П.¹, Ясюкевич А.С.¹, Кулешов Н.В.¹ Шеховцов А.Н.², Космына М.Б.²

¹Белорусский национальный технический университет Минск, Республика Беларусь ²Институт монокристаллов НАН Украины Харьков, Украина

Свойства локального окружения редкоземельного иона (РЗИ) в твердотельной матрице существенным образом влияют на его спектроскопичехарактеристики. Параметры ские Джадда-Офельта (Д-О), Ω_2 , Ω_4 и Ω_6 , могут дать информацию о симметрии ближайшего окружения РЗИ и ковалентности связей РЗИ – лиганды [1]. В некоторых случаях, например, для неодимсодержащих сред, параметры Д-О позволяют предложить спектроскопические критерии качества исследуемых материалов как активных лазерных сред [2].

Спектроскопические и структурные характеристики группы кристаллов двойных кальциевых ортованадатов RE:Ca₉Ln(VO₄)₇ и RE:Ca₁₀A(VO₄)₇ (Ln = Y, La-Lu, A – катион щелочного металла, RE – РЗИ) исследовались в работах [3-6]. Разупорядоченность структуры этих материалов приводит к уширению линий в спектрах поглощения и люминесценции, что представляет интерес для определенных лазерных применений этих кристаллов.

В данной работе был рассмотрен спектроскопический критерий лазерного качества иона неодима в ряду кристаллов Nd:Ca₉Ln(VO₄)7 (CLaV), Nd:Ca₉La(VO₄)₇ (NLaV), Ca₉Nd(VO₄)₇ (CNdV), Nd:Ca₁₀Li(VO₄)₇ (CLV) и Nd:Ca₁₀K(VO₄)₇ (СКV) на основе параметров Ω_4 и Ω_6 .

Ввиду того, что вероятность излучательных переходов с уровня ⁴F_{3/2} определяется преимущественно величинами Ω₄ и Ω₆, вводится параметр спектроскопического качества χ [2], численно равный их отношению. Из теории Д-О можно получить аналитическое выражение для коэффициентов ветвления люминесценции $\beta_{(II)}$:

$$\beta(JJ') = \frac{(a_{J'}\chi + b_{J'})\lambda_{JJ'}^{-3}}{\sum_{J'} (a_{J'}\chi + b_{J'})\lambda_{JJ'}^{-3}}$$
(1)

где $a_{J'} = |\langle {}^4F_{3/2} / / U^{(4)} / | {}^4I_{J'} \rangle|^2; b_{J'} = |\langle {}^4F_{3/2} / / U^{(6)} / | {}^4I_{J'} \rangle|^2.$

4. Гулис, И.М. Многощелевой спектрометр с дифракционной решеткой и зеркальными объективами для спектроскопии с пространственным разрешением / И.М. Гулис, А.Г. Купреев, И.Д. Демидов // Журн. Белорус. гос. ун-та. Физика. – 2018. – № 2. – С. 4–10.

5. Гулис, И.М. Оптическая схема полихроматора изображения для спектроскопии с пространственным разрешением / И.М. Гулис, А.Г. Купреев // Журн. прикл. спектр. – 2019. – Т. 86, № 5. – С. 813–816.

Здесь $a_{J'}$ и $b_{J'}$ – квадраты матричных элементов тензора U^(t) [7].

На рисунке 1 представлены зависимости коэффициентов ветвления люминесценции В(ЛЛ) кристаллов кальциевых ванадатов от параметра γ для излучательных переходов с уровня ⁴F_{3/2}. Для сравнения также приведены данные для наиболее популярных неодимсодержащих кристаллов: иттрий-алюминиевого граната (YAG) и иттриевого ортованадата (YVO₄). Мощность люминесценции на переходе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ монотонно возрастает с увеличением параметра у, в то время как для переходов на уровни ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$ и ${}^{4}I_{15/2}$ – монотонно уменьшается. При этом коэффициенты ветвления люминесценции $\beta_{(JJ')}$ на уровни ⁴I_{9/2} и ⁴I_{11/2} имеют одинаковые значения при величине параметра у около 1,16 (см. рисунок 1).

Рисунок 1 – Зависимость коэффициента ветвления люминесценции $\beta_{(JJ)}$ иона неодима от параметра спектроскопического качества у

Также из рисунка 1 следует, что согласно спектроскопическому критерию, кристаллы типа Са10А(VO4)7 наиболее предпочтительны для получения генерации в области 900 нм.

Примечательно, что параметры Ω_4 и Ω_6 для ионов неодима могут быть определены без выполнения полного расчёта Д-О [2], и, соответственно, получен параметр у. Для этого

5

необходимо найти изолированные переходы в поглощении, которые зависят главным образом от матричных элементов $|<||U^{(4)}||>|$ и $|<||U^{(6)}||>|$. Такими являются переходы с основного уровня ⁴I_{9/2} на уровни ²P_{1/2} и ⁴I_{15/2}, сила линии *S* которых вычисляется по формулам:

$$S({}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}) = 0,0367 \cdot \Omega_{4},$$
 (2, a)

$$S({}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}) = 0,0001 \cdot \Omega_{4} + 0,0452 \cdot \Omega_{6}, \quad (2, \delta)$$

соответственно. Если пренебречь первым слагаемым во втором уравнении, то параметр оптического качества χ может быть найден из следующего соотношения:

$$\chi = 1,23 \cdot S({}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}) / S({}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}) \quad (2, e)$$

Здесь нет необходимости в определении концентрации ионов неодима в кристалле, что существенно упрощает эксперимент и вычисления. В качестве примера на рисунке 2 показан спектр коэффициентов поглощения кристалла CNdV.

В данном случае необходимо знание только относительных величин сил линий *S*, которые пропорциональны интегральным коэффициентам поглощения $\int \overline{k(\lambda)} d\lambda$ соответствующих переходов

усредненным по поляризациям, что приводит к следующему соотношению:

$$\chi = \frac{n_{vis}}{\left(n_{vis}^2 + 2\right)^2} \frac{\left(n_{ir}^2 + 2\right)^2}{n_{ir}} \frac{\overline{\lambda}_{ir}}{\overline{\lambda}_{vis}} \frac{\int \overline{k_{vis}(\lambda)} d\lambda}{\int \overline{k_{ir}(\lambda)} d\lambda}$$
(3)

Здесь *n* – показатель преломления, $\overline{\lambda}$ – средневзвешенная длина волны перехода, а индексы *vis* и *ir* обозначают входящие в формулу величины на длинах волн, соответствующих переходам ⁴I_{9/2} \rightarrow ²P_{1/2} и ⁴I_{9/2} \rightarrow ⁴I_{15/2}.

Значения параметра спектроскопического качества χ для кристаллов кальциевых ванадатов сведены в таблицу. Как видно, значения параметра χ полученные по двум методам находятся в хорошем согласии друг с другом.

Таблица – Значения параметра спектроскопического качества, вычисленного по теории Д-О и формуле (2)

(2)						
	Кристалл	CYV	CNdV	CLaV	CKV	CLV
	χ(Д-О)	1,11	1,27	1,14	1,17	1,25
	χ (ф-ла (3))	1,10	1,15	1,11	1,15	1,21

→ ²P_{1/2}

Рисунок 2 – Спектры коэффициентов поглощения α_{noen} на переходах ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ кристалла С9Nd(VO4)7

Таким образом, в настоящей работе исследовано влияние состава кристаллов кальциевых ванадатов на люминесцентные свойства иона неодима. Увеличение параметра χ от кристалла Nd:Ca₉Y(VO₄)₇ к кристаллу Nd:Ca₁₀Li(VO₄)₇ указывает на увеличение вероятности перехода ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ и уменьшение вероятностей переходов ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ и ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$. Это позволяет сделать вывод, что, изменяя состав кристалла, можно в некоторых пределах варьировать люминесцентные характеристики иона неодима.

Литература

1. Görller-Walrand C. Spectral intensities of f-f transitions / C. Görller-Walrand and K. Binnemans // Handbook on the Physics and Chemistry of Rare Earths. – 1998. – Vol. 25. – P. 101–264.

2. Многоуровневые функциональные схемы кристаллических лазеров / А.А. Каминский, Б.М. Антипенко. – М. : Наука, 1989. – 270 с.

3. Growth, spectroscopic and thermal properties of Nddoped disordered Ca₉(La/Y)(VO₄)₇ and Ca₁₀(Li/K)(VO₄)₇ crystals / P.A. Loiko, [et al.] // J. Lumin. -2013. - Vol. 137. -P. 252–258.

4. Crystal structures of double vanadates $Ca_9R(VO_4)_7$. III. R = Nd, Sm, Gd or Ce / A.A. Belik [et al.] // Crystallogr. Rep. -2000. - Vol. 45. - P. 798-803.

5. Growth and spectroscopy of new laser crystals $Ca_{10}Yb_{0,3}K_{0,1}(VO_4)_7 / M.B.$ Kosmyna, [et al.]// Functional Materials. – 2012. – Vol. 19, N 4. – P. 552–554.

6. Photoluminescence properties of $Ca_9Y(VO_4)_7$ and $Ca_9Y_{0.95}Ln_{0.05}(VO_4)_7$ ($Ln^{3+} = Eu^{3+}, Sm^{3+}, Pr^{3+})/S$. Chao [et al.] // J. Alloy Compd. – 2009. – Vol. 487. – P. 346–350.

7. Spectroscopy of a New Laser Garnet $Lu_3Sc_2Ga_3O_{12}:Nd^{3+}$ / A.A. Kaminskii [et al.] // Phys. Stat. Sol. A. $-1994.-Vol.\ 141.-P.\ 471-494.$

УДК 629.7

СИСТЕМА СТАБИЛИЗАЦИИ ОПТИЧЕСКОЙ ОСИ Матвеев В.В.

ФГБОУ ВО «Тульский государственный университет» Тула, Российская Федерация

Введение. Системы стабилизации (СС) обеспечивают требуемую ориентацию оптической оси в пространстве [1–3]. СС наряду со стабилизацией используются и для управления угловым положением стабилизированной оптико-электронной аппаратуры, а также для измерения угловых отклонений подвижного объекта. В наиболее распространенных СС в качестве измеритель-