Th.Wilfinger, W.Kapaun, E.Neubauer // Euro PM2018 -Additive Manufacturing // Euro PM2018 Congress & Exhibition (14-18 October 2018): Proceedings, Bilbao, Spain. -Bilbao: Copyright 2018 ©EPMA.

12. Additive Manufacturing of Stainless Steel/Zirconia Ceramic Composite Parts by Fused Filament Fabrication and Sintering / D. Godlinski, Y. Müller, S.B. Hein // Euro PM2018 - AM Fused Filament Printing // Euro PM2018 Congress & Exhibition (14-18 October 2018): Proceedings, Bilbao, Spain. - Bilbao: Copyright 2018 ©EPMA.

13. Metal-Ceramic Material Compounds Made by Ad-/ M.Tassilo, A.Johannes, ditive Manufacturing U.Scheithauer, A.Müller-Köhn, St.Weingarten // Euro PM201 8 - AM Fused Filament Printing // Euro PM2018 Congress & Exhibition (14 - 18 October 2018): Proceedings, Bilbao, Spain. - Bilbao: Copyright 2018 ©EPMA.

14. Additive Manufacturing of Metals by 3D Micro-Extrusion of Powder Filled Paste / M. Rombouts, J. Verwimp, S. Mullens // Euro PM2018 - Additive Manufacturing // Euro PM2018 Congress & Exhibition (14 - 18 October 2018): Proceedings, Bilbao, Spain. - Bilbao: Copyright 2018 ©EPMA.

15. Production of Multimaterial Components by Material Extrusion-Fused Filament Fabrication (ME-FFF) / Kukla C., Cano S., Moritz T., Müller-Köhn A., Günther A., Hampel, S., Holzer C. // Euro PM2018 - EuroAM Meeting // Euro PM2018 Congress & Exhibition : Proceedings, Bilbao, Spain. - Bilbao: Copyright 2018 ©EPMA.

УДК 616.77; 681.2

ИССЛЕДОВАНИЕ ПРОЦЕССА СВАРКИ НИТИНОЛОВОЙ ПРОВОЛОКИ Минченя В.Т.¹, Савченко А.Л.¹, Королев А.Ю.²

¹Белорусский национальный технический университет Минск, Республика Беларусь ²Научно-технологический парк БНТУ «Политехник» Минск, Республика Беларусь

B рамках исследования рассматривался технологический процесс изготовления элемента стентграфта – внутрисосудистого эндопротеза, состоящего из проволочного каркаса и тканевой оболочки и предназначенного для лечения аневризм грудного отдела аорты (рис. 1).

Рисунок 1 - Стентграфт

Элемент стентграфта, взятый для разработки техпроцесса представляет собой зигзагообразный замкнутый контур, пришиваемый по краю стентграфта. Элемент отличается большим по сравнению с другими элементами количеством зигзагов и малой длиной прямолинейных участков.

Стент-элемент изготовлен из нитиноловой проволоки марки ASTM F2063 диаметром 0,23 мм с термообработкой и последующей сваркой концов.

В существующем техпроцессе элемент каркаса получен гибкой с последующей термообработкой и соединением концов проволоки отрезками трубок.

Экспериментальная партия изготавливалась на базе ГП «Научно-технологический парк БНТУ «Политехник».

Рисунок 2 – Рабочая зона сварочного автомата

Рисунок 3 – Сварочное приспособление

Рисунок 4 – Изображение зоны сварки

Для сварки концов проволоки используется лазерный сварочный автомат Rofin Select производства ROFIN-BAASEL Lasertech GmbH & Co, Германия.

На рис. 2 показана рабочая зона автомата, на рис. 3 – приспособление в рабочей зоне с установленным свариваемым стент-элементом, на рис. 4 – изображение зоны сварки на экране управляющего компьютера.

Сварка во избежание перегрева материала осуществляется импульсами лазерного излучения, в результате чего шов состоит из ряда сливающихся точек расплавленного металла. На рис. 4 видны крайние точки, формируемые в первую очередь для фиксации концов проволоки, после чего промежуток заполняется сварным швом. Шов выполняется с одной или двух сторон (рис. 5).

Рисунок 5 – Размеры сварного шва

Готовый шов показан на рис. 6.

Рисунок 6 – Внешний вид сварного шва

На рис. 7 показан внешний вид образца изготовленного изделия.

Рисунок 7 – Внешний вид стент-элемента

Для оценки возможности лазерной сварки были взяты образцы проволоки диаметром 0,23 мм, используемой для изготовления каркасов стент-графтов. Часть образцов подвергалась сварке встык, часть внахлест с различными режимами, указанными в табл. 1.

таолица т – г сжимы сварк	Таблица 1	– Режимы	сварки
---------------------------	-----------	----------	--------

Образец	U, B	<i>t</i> , мс	<i>f</i> , Гц
1	900	1,0	13
2	650	1,2	7
3	950	1,0	8
4	1000	1,2	15
5	1150	0,9	8

Примечание: U – напряжение на лазере; t – длительность импульса лазерного излучения; f – частота следования импульсов

В ходе испытаний образцов на разрывной машине было установлено, что при исследуемом диаметре проволоки стыковые швы не обладают достаточной прочностью. Разрушающая нагрузка составила около 30% от предела прочности сплошного нитинола. Поэтому использование стыковых швов является нецелесообразным.

В ходе испытаний образцов, сваренных внахлест, были получены значения разрушающей нагрузки, приведенные в таблице 2. В таблице также приведены расчетные значения предела прочности $\sigma_{\rm B}$ с учетом того, что касательные напряжения при разрушении составляют примерно 65% от предела прочности.

ruosinida 2 resysistatisi nelisitatinin ilibob				
Образец	Усилие разрыва, Н	σв, МПа		
1	76,3	1368,9		
2	89,0	1596,7		
3	67,7	1214,6		
4	77,3	1386,8		
5	81,4	1460,4		

Таблица 2 – Результаты испытаний швов

Так как по справочным данным предел прочности нитинола составляет 1000– 1600 МПа, можно сделать вывод о достаточной статической прочности шва.

Для оценки усталостной прочности шва кольцевые зигзагообразные образцы подвергались циклическому нагружению с частотой 25 Гц и амплитудой 5 мм в течение 5 часов.

Все образцы, кроме 5-го разрушились, при этом разрушение наблюдалось как в самом сварном шве, так и в металле в непосредственной близости от него.

Из полученных результатов можно сделать вывод об оптимальных режимах сварки, которые и использовались во вновь разработанном технологическом процессе. Наряду с лазерной сваркой в техпроцесс были внедрены новые методики гибки проволоки и нанесения покрытий.