3.Reklaitis, A. Monte Carlo investigation of current voltage and avalanche noise in GaN double-drift impact diodes / A. Reklaitis, L. Reggiani // J. Appl. Phys. – 2005. – Vol. 97. – P. 043709-1–043709-8.

4.Rengel, R. A microscopic interpretation of the RF noise performance of fabricated FD SOI MOSFETs / R. Rengel [et al.] // IEEE Trans. Electron Devices. – 2006. – Vol. 53, no. 3. – P. 523–532.

5.Хокни, Р. Численное моделирование методом частиц: пер. с англ / Р. Хокни, Дж. Иствуд. – М. : Мир, 1987. – 640 с.

6.Борздов, В.М. Оценка эффективной пороговой энергии межзонной ударной ионизации в глубокосубмикронном кремниевом п-канальном МОПтранзисторе / В.М. Борздов [и др.] // Микроэлектроника. – 2014. – Т. 43, № 3. – С. 188–192.

7. Kamakura, Y. Impact ionization model for full band Monte Carlo simulation / Y. Kamakura [et al.] // J. Appl. Phys. – 1994. – Vol. 75, no. 7. – P. 3500–3506.

8. Kunikiyo, T. A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation / T. Kunikiyo [et al.] // J. Appl. Phys. – 1996. – Vol. 79, no. 10. – P. 7718–7725.

УДК 621.382

АНАЛИЗ ТЕПЛОВЫХ ПАРАМЕТРОВ ЛИНЕЙНЫХ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ Бумай Ю.А.¹, Васьков О.С.¹, Нисс В.С.¹, Грибович В.В.², Цивако А.А.²

¹Белорусский национальный технический университет Минск, Республика Беларусь ²ОАО «ИНТЕГРАЛ» – управляющая компания холдинга «ИНТЕГРАЛ» Минск, Республика Беларусь

С использованием релаксационного импеданс-спектрометра [1] тепловых процессов проведены измерения тепловых параметров линейных стабилизаторов напряжения. Исследовались 10 образцов микросхем 5318EP-015 (рис. 1а), в металлокерамическом корпусе H02.8-1В, распределенные на три группы (I, II, III) в соответствии с типом посадки кристалла (разным видом клея). Вторая группа содержала четыре образца, остальные по три. Обозначения образцов: номер образца в группе, s – разделитель, номер группы. Например, 4s2G – образец с номером 4 второй группы. Также, для сравнения, определялся спектр теплового сопротивления стабилизатора КР1181EH5A (рис. 1б) в пластмассовом корпусе KT-26 (ТО-92).

Анализ структуры теплового сопротивления образцов производился методом тепловой релаксационной дифференциальной спектрометрии [2, 3]. Из анализа временной зависимости температуры активной области (полученной из изменения прямого смещения на полупроводниковом переходе) определялось внутреннее тепловое сопротивление микросхемы и его структура в виде дифференциального спектра (зависимости теплового сопротивления элементов структуры микросхемы и внешнего теплоотвода от времени тепловой релаксации). Дифференциальный спектр определялся на основе производных высшего порядка динамического теплового импеданса и соответствует модели Фостера. Анализ растекания теплового потока в исследуемых структурах проводился на основе концепции тепловой эффузии. Из послойных значений компонентов теплового сопротивления и тепловой емкости, определялось значение эффективной площади S_e^* (площади сечения теплового потока) исследуемых микросхем.

На рис. 2 приведены сравнительные спектры теплового сопротивления $R_{\rm th}$ и профили растекания теплового потока (зависимости площади сечения теплового потока $S_{\rm e}$ от времени) в исследованных образцах. Из рис. 2 видно, что микросхема 5318EP-015 (образец 4s2G, временной интервал 0,001-1 с) имеет более высокий уровень внутреннего теплового сопротивления $R_{\rm jc}$, в то время как КР1181EH5A – внешнего теплового сопротивления $R_{\rm ca}$ (пик находится во временном интервал 10–20 с).

Профиль растекания тепла Se для обоих образцов на рис. 2 (пунктирные линии) для времен свыше 10 с показывает резкий рост теплового рассеяния, при этом площадь теплового потока Se превышает площадь корпуса микросхемы, что характеризует переходной слой корпус - окружающая среда. Для образца КР1181ЕН5А характерно слабое изменение Se (малое боковое растекание тепла в интервале 0,1-10 с) вплоть до переходной границы, что свидетельствует о преимущественном рассеянии в окружающую среду через выводы микросхемы, в соответствии с низкой теплопроводностью пластмассового корпуса ТО-92. В то же время в 5318ЕР-015 теплоотвод в основном осуществляется через боковые стенки металлокерамического корпуса (рост S_e в диапазоне 0,1-1 с), что соответствует боковому растеканию тепла от кристалла.

На рис. 3 представлено изменение теплового сопротивления переходной границы корпус – окружающая среда микросхемы 5318EP-015 при принудительном обдуве корпуса воздухом. Верхняя линия для R_{ja} и нижняя линия для S_e принадлежат образцу 4s2G без охлаждения, остальные – образцу 4s2G-V с охлаждением.

Рисунок 4 – Разброс внутреннего теплового сопротивления R_{jc} (*p*-*n* переход – корпус) исследованных образцов микросхемы 5318EP-015 нормированных на среднее значение тепловых сопротивлений всех образцов

Из зависимости S_e от времени в диапазоне, обозначенном R_{ca} на рис. З видно, что при принудительном обдуве микросхемы 5318EP-015 существенно уменьшается переходное тепловое сопротивление "корпус – окружающая среда", а также увеличивается площадь рассеяния тепла.

Гистограмма разброса внутреннего теплового сопротивления R_{jc} микросхемы 5318EP-015 и сравнительные спектры сопротивления R_{jc} в образцах разным качеством посадки кристалла представлены на рис. 4 и рис. 5.

Из рис. 4 видна тенденция изменения теплового сопротивления R_{jc} для разных групп образцов микросхемы 5318ЕР-015 в зависимости от качества посадки кристалла. Необходимо учитывать, что действительное изменение качества посадки более высокое, так как в тепловое сопротивление R_{jc} помимо слоя посадки входит сопротивление керамической подложки. Тепловое сопротивление кристалла существенно ниже и слабо влияет R_{jc} . Из рис. 5 тоже виден существенный вклад слоя посадки в R_{jc} .

Рисунок 5 – Изменение спектра внутреннего теплового сопротивления R_{jc} в образцах микросхемы 5318EP-015 в зависимости от качества посадки кристалла

Более детальный анализ структуры внутреннего сопротивления образцов возможен с помощью дискретных спектров.

На основании вышеизложенного можно сделать следующие выводы.

1. Микросхемы 5318ЕР имеют более высокий уровень внутреннего, а КР1181ЕН5А внешнего теплового сопротивления.

2. Для КР1181ЕН5А характерно рассеяние тепла в окружающую среду через выводы микросхемы, а в 5318ЕР-015 теплоотвод в основном осуществляется через корпус.

3. Принудительный обдув корпуса 5318ЕР существенно снижает тепловое сопротивление микросхемы.

4. Образцам группы III соответствует большее тепловое сопротивление, а группы I – меньшее.

Литература

1. Бумай, Ю.А. Релаксационный импеданс-спектрометр тепловых процессов / Ю.А. Бумай, О. С. Вась-

ков, В. К. Кононенко, В. М. Ломако // Электроника инфо. – 2010. – № 3. – С. 58–59.

2. Васьков, О.С. Диагностика технологических характеристик мощных транзисторов с помощью релаксационного импеданс-спектрометра тепловых процессов/ О.С. Васьков, В.С. Нисс, В.К. Кононенко, А.С. Турцевич, И.И. Рубцевич, Я.А. Соловьев, А.Ф. Керенцев // Изв. вузов. Материалы электронной техники. – 2014. № 1. – С. 47–52.

3. Оценка тепловых параметров мощных биполярных транзисторов методом тепловой релаксационной дифференциальной спектрометрии / В.С. Нисс, О.С. Васьков, А.С. Турцевич, А.Ф. Керенцев, В.К. Кононенко // Приборы и методы измерений, 2015. №2(6). – С. 249–256.

УДК 621.315.4/.61 ЭКРАНЫ ЭМИ НА ОСНОВЕ НЕТКАНОГО МАТЕРИАЛА С ФИГУРАМИ ИЗ МЕДНОЙ ФОЛЬГИ Абдулхади Х.Д.А., Прудник А.М.

Белорусский государственный университет информатики и радиоэлектроники Минск, Республика Беларусь

Радиоэлектронные средства, персональные компьютеры, средства сотовой и спутниковой связи, навигационные и радиолокационные системы, бытовая техника, приборы и изделия медицинского назначения, трансформаторные станции, антенны и ретрансляторы излучают электромагнитные волны сверхвысоких частот. Длительное и регулярное воздействие электромагнитного неионизирующего излучения негативно влияют на их функциональное состояние биологических объектов [1].

Также является проблемой защита средств передачи, хранения и обработки информации, а также локализация источников электромагнитного неионизирующего излучения для предотвращения утечки информации по техническим каналам.

Разработка, исследование и создание инновационного ассортимента радиопоглощающих тканых и нетканых материалов для изготовления экранов электромагнитного излучения с целью минимизации отрицательного воздействия электромагнитного излучения является актуальной задачей.

Материалы на основе нетканых материалов широко применяются для создания экранов электромагнитного излучения в широком диапазоне частот, поскольку они характеризуются высоким уровнем совместимости с биологическими объектами [2].

В настоявший момент существует спрос на материалы, применяемые для защиты от излучения диапазона СВЧ, которое создается различными устройствами бытового и промышленного назначения. Одной из актуальных проблем является разработка и создание гибких, воздухопроницаемых материалов, обеспечивающих необходимый уровень защиты от электромагнитного излучения.

Экспериментальные образцы нетканого материала изготавливались из полиэстера, полипропилена и шерсти с добавлением частиц углерода [3]. Для обеспечения необходимых отражающих свойств, на поверхность нетканого материала наклеивали фигуры из медной фольги, которые представляли собой квадраты 5×5 см из полосок меди шириной 5 мм.

Для анализа коэффициентов отражения и передачи электромагнитного излучения (ЭМИ) производили сравнение значений напряженности электрического поля в одной и той же точке пространства при наличии и отсутствии экранирующего материала.

Для исследования экранирующих характеристик использовался измеритель коэффициентов передачи и отражения, работающий по принципу выделения и детектирования уровней падающей и отраженной волн, по методике, описанной в [6]. Измерительная установка состояла из блоков: обработки измерительных сигналов, генератора качающейся частоты, преобразования и обработки прошедшей волны, а также преобразования и обработки падающей/отраженной волны.

Для поиска оптимального варианта расположения экспериментального образца относительно источника излучения, при проведении измерений коэффициентов отражения и поглощения осуществляли разворот образца относительно пирамидальной рупорной антенны на 0°, 90°, 180° и 270°.

В результате проведенных измерений, показано, что коэффициент отражения в диапазоне частот 0,7–2 ГГц в режиме холостого хода составил –1,0...–16,8 дБ, с максимальными значениями при 90°; (рис 1,*a*), в то же время коэффициент отражения в диапазоне частот 2–17 ГГц в режиме холостого хода составил –0,7...–17 дБ с максимальными значениями при 270° (рис 1, δ).

При этом, коэффициент отражения в диапазоне частот 0,7–2 ГГц в режиме короткого замыкания составил -0,3...-1,7 дБ, с максимальными значениями при 90° и 180° (рис 2,*a*), в то же время коэффициент отражения в диапазоне частот 2–17 ГГц в режиме короткого замыкания составил -0,0...-8,1 дБ с максимальными значениями при 0° (рис 2, δ).

Значения коэффициента передачи в диапазоне частот 0,7–2 ГГц составили –0,2…–25,1 дБ, с максимальными значениями при 0° и 90° (рис 3,*a*), в