УДК 620.9

ОБЪЕМНАЯ НАГРУЗКА И СОПРОТИВЛЕНИЕ ТОПКИ ДВУХХОДОВЫХ ЖАРОТРУБНЫХ ВОДОГРЕЙНЫХ КОТЛОВ VIESMANN СЕРИИ VITOPLEX 100 ТИП PV1

Драенков И. С.

Научный руководитель – к.т.н. доцент Ярмольчик Ю.П.

Двухходовые водогрейные жаротрубные котлы VIESSMANN (Германия) серии VITOPLEX 100 тип PV1 выпускаются единой конструкции в диапазоне мощности 110-2000 кВт. Важной технико-экологической характеристикой котла является удельная объемная нагрузка котла. От нее зависит количество образующихся NOx.

Формула для определения удельной объемной нагрузки котла:

$$q_{v} = \frac{N_{\text{max}}}{\frac{\pi \times d^{2}}{4} \times l}, \kappa Bm / M^{3}$$
 (1)

где d — диаметр топки котла, м;

l — длина топки котла, м;

 $N_{\rm max}$ — мощность топки, кВт.

В зависимости от конструкции и качества исполнения котла определяется удельное сопротивление его топки. Представляется вероятность, что количество образующихся NOx зависит от удельного сопротивления топки. Эта величина определяется как:

$$R_{N} = \frac{\Delta P}{N_{\text{max}}}, \quad m\delta ap / MBm \tag{2}$$

где ΔP — противодавление топки, мбар;

 N_{\max} — мощность топки, МВт.

Таблица 1

Характеристики котлов VIESSMANN серии VITOPLEX 100 тип PV1				
Модель	Длина, м	Диаметр, м	Мощность топки, кВт	Аэродинамичское сопротивление топки, мбар
PV1 110-150 kW	0,865	0,46	130	0,6
PV1 151-200 kW	1,005	0,46	175	1,2
PV1 201-250 kW	1,005	0,5	225	1,3
PV1 251-310 kW	1,185	0,5	280	2,3
PV1 311-400 kW	1,305	0,585	355	2,5
PV1 401-500 kW	1,305	0,585	450	2,3
PV1 501-620 kW	1,405	0,64	560	3,1
PV1 621-780 kW	1,47	0,78	700	3,5
PV1 781-950 kW	1,57	0,78	815	5
PV1 951-1120 kW	1,8	0,84	1035	3
PV1 1121-1350 kW	2	0,84	1235	4
PV1 1351-1700 kW	2,11	0,95	1525	4,5
PV1 1701-2000 kW	2,27	0,95	1850	6

Рисунок 1. Удельная объемная нагрузка котлов VIESSMANN серии VITOPLEX 100 тип PV1

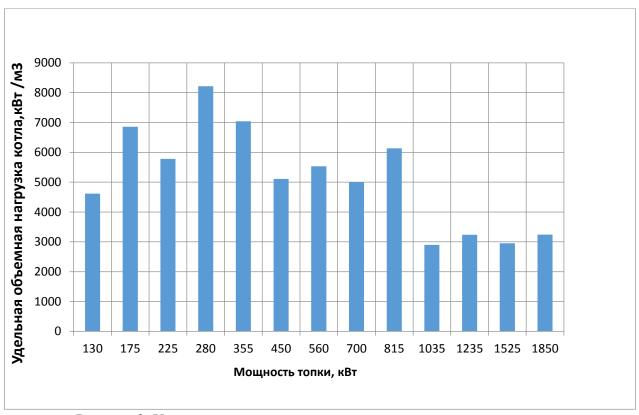


Рисунок 2. Удельное сопротивление топки в зависимости от мощности котлов VIESSMANN серии VITOPLEX 100 тип PV1

Диаграмма (Рис. 2) показывает, что у котлов PV1 110-150 kW наименьшая удельная объемная нагрузка $q_v = 904,78 \ \kappa Bm/m^3$. А у котлов PV1 401-500 kW и

PV1 501-620 kW $q_v = 1283,57 \ \kappa Bm/m^3$ и $q_v = 1239,60 \ \kappa Bm/m^3$ соответственно — наибольшая.

Диаграмма (Рис. 3) показывает, что наименьшее удельное сопротивление топки по мощности у котлов PV1 951-1120 kW $R_N = 2898,6~ \text{мбар}/\text{MBm}$ и PV1 1351-1700 kW $R_N = 2950,8~ \text{мбар}/\text{MBm}$. А наибольшее сопротивление у PV1 251-310 kW $R_N = 8214~ \text{мбар}/\text{MBm}$.

Исходя из проанализированных данных, у котла VIESSMANN серии VITOPLEX 100 тип PV1 наименьшая интенсивность образования *NOx* по тепловому механизму Зельдовича наблюдается у PV1 951-1120 kW.

Литература

1. Системы отопления // VIESSMANN [Electronic resource]. – Москва, 2017. – Mode of access: https://www.viessmann.ru/ru/zilye-zdania/gazovye-vodogrejnye-kotly/nizkotemperaturnye-gazovye-vodogrejnye-kotly/vitoplex-100.html – Date of access: 07.04.2019.