УДК 681.5(076.5)

СРАВНЕНИЕ РАЗЛИЧНЫХ МЕТОДОВ СТРУКТУРНО-ПАРАМЕТРИЧЕСКИХ ОПТИМИЗАЦИИ САУ УРОВНЯ ВОДЫ В ПАРОГЕНЕРАТОРАХ АЭС

Волчкевич О.М.

Научный руководитель – д.т.н., профессор Кулаков Г.Т.

Улучшение поддержания барабане качества уровня воды A9C[1]. парогенераторов безопасность работы В работе повышает представлено сравнение каскадной САР(КСАР) с реальным корректирующим ПИД-регулятором, оптимизированным по методам ЕС[2] и инвариантной САР(ИСАР) при плановом изменении нагрузки с корректирующим ПИрегулятором, настроенным по методу симметричного оптимума[3].

КСАР с реальным корректирующим ПИД регулятором, оптимизированным по методам ЕС:

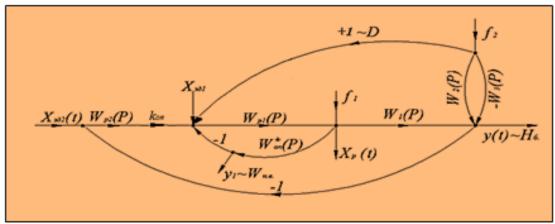


Рисунок 1. Структурная схема каскадной САР уровня воды в барабане парогенератора с оптимизацией корректирующего регулятора по методам ЕС [2]

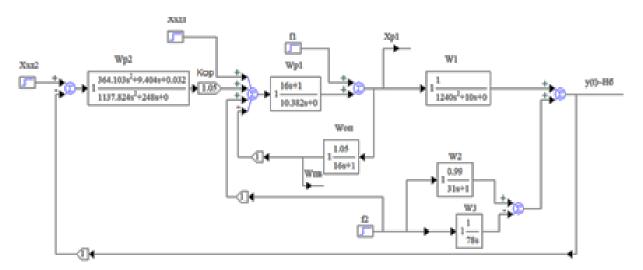


Рисунок 2. Структурная схема моделирования КСАР

На схеме обозначены:

• y(t) — основная регулируемая величина (Нб-уровень воды в парогенераторе);

- $x_{3\partial 1}$ заданное значение регулируемого параметра;
- $x_{3\partial 2}$ заданное значение корректирующего регулятора;
- $f_1(t)$ внутреннее возмущение;
- $x_p(t)$ регулирующее воздействие;
- \bullet $W_{f2}(\mathbf{p}) = W_2(\mathbf{p}) W_3(\mathbf{p}) = \frac{k_2}{T_2 \, p + 1} \frac{1}{T_3 \, p},$ передаточная функция крайнего

внешнего возмущения, с явлением "набухания" уровня при возмущении расхода перегретого пара;

ullet $W_1(p) = \frac{1}{T_1 p(au_1 p + 1)}$ — передаточная функция объекта регулирования по

каналу регулирующего воздействия;

- ullet $W_{on}^*(p) = rac{k_{on}}{T_{on}^*p+1}$ передаточная функция опережающего участка;
- ullet $W_{p1}(p) = rac{T_{on}^* p + 1}{k_{on} T_{3\partial n} p} -$ передаточная функция стабилизирующего ПИ

регулятора (СР);

ullet $w_{p2}(p) = rac{k_{p2}\cdot (Tu_2\,\mathrm{p}+1)\cdot (T\partial_2\,\mathrm{p}+1)}{Tu_2\,\mathrm{p}\cdot (T\delta\,\mathrm{p}+1)} -$ передаточная функция корректирующего

ПИД регулятора (КР), где:

 k_{p2} – коэффициент передачи;

 Tu_2 – время интегрирования, с;

 $T\partial_{2}$ – время дифференцирования, с;

 $T\delta = \frac{T\partial_2}{10}$ — балансная постоянного времени ПИД регулятора, с.

Для сравнения выбираем метод EC-2005, т.к. он показал наилучшие результаты.

ИСАР при плановом изменении нагрузки и настройке корректирующего ПИ-регулятора по методу симметричного оптимума с корректором в цепи задания

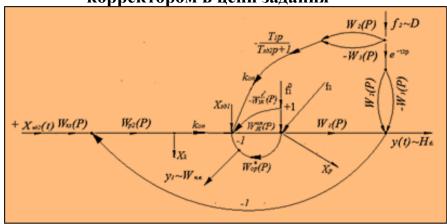


Рисунок 3. Структурная схема ИСАР при плановом изменении нагрузки и настройке корректирующего ПИ-регулятора, настроенным по методу симметричного оптимума [3]

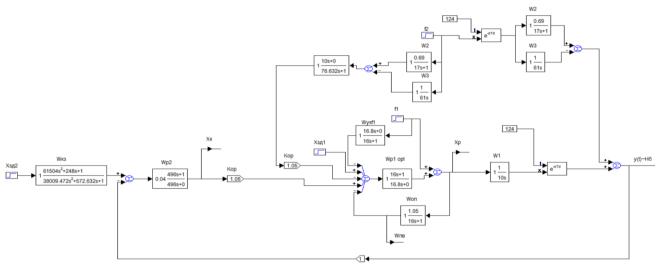


Рисунок 4. Структурная схема моделирования ИСАР

На схеме обозначены:

- y(t) основная регулируемая величина;
- $x_{_{3\partial2}}$ заданное значение корректирующего регулятора;
- ullet f_1^0 наиболее опасное внутреннее возмущение;

•
$$W_{K3}(p) = \frac{4\tau_1^2 p^2 + 2\tau_1 p + 1}{(4\tau_1 p + 1)(T_{3\partial 2} p + 1)}$$
, — передаточная функция корректора задания,

 $T_{3\partial 2} = \tau_1 \cdot \gamma$. Здесь γ принадлежит ряду чисел правила золотого сечения[0,618; 0,382...0,09];

ния[0,018, 0,382...0,09],
$$\bullet W_{p2}(p) = \frac{k_{p2}(T_{u2}p+1)}{T_{u2}p}, - \text{передаточная функция корректирующего ПИ-}$$

регулятора;

улятора;
$$\bullet W_{\mathcal{Y}K}^{f_1^0}(p) = -\frac{1}{W_{\mathcal{P}_1}^{opt}(p)}, \quad - \text{ передаточная } функция \ устройства компенсации }$$

наиболее опасного внутреннего возмущения;

$$\bullet W_{p1}^{opt}(p) = \frac{T_{on}^* p + 1}{k_{on} T_{on}^* p},$$
 — передаточная функция оптимального

стабилизирующего регулятора, который с дополнительным усилителем k_{on} между выходом корректирующего и входом стабилизирующего регулятора превращает внутренний контур стабилизирующего регулятора в усилитель с коэффициентом передачи k = 1;

•
$$W_1(p) = \frac{e^{-\tau_1 p}}{T_1 p}$$
, — передаточная функция объекта регулирования;

Для сравнения выбираем процесс $\gamma = 0.382$, т.к. он показал наилучшие результаты.

Сравнение смоделированных переходных процессов КСАР с реальным ПИД-регулятором, оптимизированным по методу ЕС-2005 и ИСАР при плановом изменении нагрузки и настройке корректирующего ПИ-регулятора по методу симметричного оптимума:

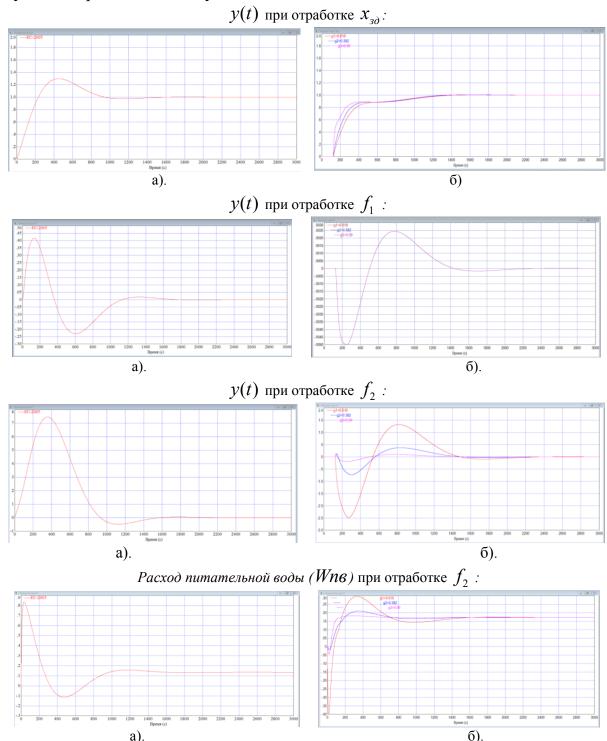


Рисунок 5. Графики переходных процессов: а). КСАР с реальным ПИД-регулятором, оптимизированным по методу ЕС-2005 [2, стр.529](k_{p2} = 0,07; Tu_2 = 310 c; $T\partial_2$ = 68,2 c;

 $T\delta = \frac{T\partial_2}{10} = 6,82$ с); б). ИСАР при плановом изменении нагрузки и настройке корректирующего ПИ- регулятора по методу симметричного оптимума

Сравнение прямых показателей качества:

Таблица 1 Прямые показатели качества(ППК) КСАР с корректирующим реальным ПИД-регулятором, оптимизированным по методу EC-2005

Основные возмущени я	t_p , c	σ_{m} , $0/0$	Ψ	$A_{ m max1}$
$y, x_{3\partial 2}$	1542	30	-	-
y, f_1	1736	-	0.95	0.42
y, f_2	1627	-	-	7.48
Wne, f_2	1787	-	0.96	0.84

Где: $y, x_{3\partial 2}$ — график изменения основной регулируемой величины при возмущении заданием; y, f_1 — график изменения основной регулируемой величины при внутреннем возмущении; y, f_2 — график изменения основной регулируемой величины при крайне внешнем возмущении; Wns, f_2 — график изменения расхода питательной воды при крайне внешнем возмущении.

Здесь приняты следующие обозначения ППК: t_p — время регулирования, с; σ_m — перерегулирование, %; ψ — степень затухания; $A_{\max 1}$ — максимальная динамическая ошибка регулирования.

Таблица 2 Прямые показатели качества ИСАР при плановом изменении нагрузки и настройке корректирующего ПИ-регулятора по методу симметричного оптимума

Основные возмущения	t_p , c	$\sigma_{_m},\%$	Ψ	$A_{\max 1}$
$y, x_{3\partial 2}$	1181	_	1	_
y, f_1	1615	-	1	- ,005
y, f_2	1458	_	1	- 0,6
Wne, f_2	1216		1	0,20

При сравнении полученных графиков и прямых показателей качества переходных процессов было выявлено, что лучшей является ИСАР при плановом изменении нагрузки и настройке корректирующего ПИ-регулятора по методу симметричного оптимума (см. таблица 1,2), т.к. она обеспечивает минимальные динамические отклонения при отработке внутреннего и внешнего возмущения. При этом достигается минимальное регулирующие изменение расхода питательной воды($W_{\text{пв}}$) при возмущении расходом пара. Кроме того, при отработке скачка задания корректирующего регулятора: время

регулирования уменьшается на 22%, а максимальная величина перерегулирования полностью исчезает.

Литература

- 1. Демченко В.А. Автоматизации и моделирование технологических процессов АЭС и ТЭС: учебной пособие/ В.А.Демченко.-Одесса: "Астропринт", 2001.- 301 с.
- 2. Aidan O'Dwyer. Handbook of PI and PID controller Tuning Rules/ O'Dwyer Aidan.-Dublin: Institute of Technology; Ireland, Imperial College Press, 2009.- 529 p.
- 3. Кулаков Г.Т. Система автоматического управления уровнем парогенераторов АЭС на базе контура регулирования со сглаживанием задающего сигнала/ Г.Т.Кулаков, С.М.Сацук, А.Н.Кухоренко//доклады БГУИР.- 2018.-№1(111).- с.72-77.