ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (12)

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

- (13) C1
 (46) 2017.10.30
- (51) MПK

G 01N 33/38	(2006.01)
G 01N 3/30	(2006.01)
G 01N 3/48	(2006.01)

(54) СПОСОБ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ БЕТОНА В БЕТОННОЙ КОНСТРУКЦИИ МЕТОДОМ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ

 (21) Номер заявки: а 20131273 (22) 2013.10.30 (43) 2015.06.30 (71) Заявитель: Белорусский национальный технический университет (ВҮ) (72) Автор: Снежков Дмитрий Юрьевич (ВҮ) 	 (73) Патентообладатель: Белорусский национальный технический университет (ВҮ) (56) ВУ 16469 С1, 2012. ВУ 15935 С1, 2012. ВУ 11103 С1, 2008. RU 2339945 С2, 2008. ВУ 15949 С1, 2012. RU 2438114 C2, 2011.
--	---

(57)

Способ определения модуля упругости бетона в бетонной конструкции методом неразрушающего контроля, при котором на поверхности бетонной конструкции размечают участок контроля, в границах которого наносят удар жестким индентором с заданной кинетической энергией W, записывают диаграмму изменения текущих значений скорости индентора V от времени t в процессе удара, получают по данным диаграммы V = f(t) диаграмму зависимости контактной силы P от глубины вдавливания индентора α , определяют по диаграмме V = f(t) максимальную скорость индентора V₀ и скорость отскока индентора V₁ по диаграмме P = f(α) - максимальную контактную силу P_{max} и остаточную глубину вдавливания α_{r} , определяют твердость H бетона поверхностного слоя участка контроля бетонной конструкции из выражения:

$$H = \frac{P_{max}}{\pi D\alpha_r},$$

Фиг. 1

где D - диаметр контактного наконечника индентора,

и модуль упругости Е бетона поверхностного слоя участка контроля бетонной конструкции из выражения:

$$\mathbf{E} = \mathbf{k}\mathbf{H}^{\frac{5}{4}} \left(\frac{\mathbf{V}_0}{\mathbf{V}_1}\right)^2 \left(\frac{\mathbf{D}^3}{\mathbf{W}}\right)^{\frac{1}{4}},$$

где k - коэффициент, зависящий от физико-механических свойств материала индентора, k≈1,6,

далее на участке контроля устанавливают излучающий и принимающий ультразвуковые преобразователи и определяют значения времени распространения Т ультразвука и расстояния L между ультразвуковыми преобразователями; сдвигают последовательно по одной линии ультразвуковые преобразователи до достижения максимального значения дифференциальной скорости V_{У3,d} распространения ультразвука в бетоне, которую определяют как отношение приращения расстояния ΔL между излучающим и принимающим ультразвуковыми преобразователями к приращению времени распространения ΔT ультразвука в бетоне, далее определяют модуль упругости E_c бетона бетонной конструкции из выражения:

$$E_{c} = 1,05 \cdot E \left(\frac{V_{y_{3,d,max}} (L_{max} - L_{min})}{V_{y_{3,d,min}} L_{max} - V_{y_{3,d,max}} L_{min}} \right)^{2},$$

где L_{min} - расстояние между излучающим и принимающим ультразвуковыми преобразователями, для которого зарегистрирована минимальная дифференциальная скорость ультразвука в бетоне, м;

L_{max} - расстояние между излучающим и принимающим ультразвуковыми преобразователями, для которого зарегистрирована максимальная дифференциальная скорость ультразвука в бетоне, м;

V_{У3,d,max} - максимальная дифференциальная скорость распространения ультразвука в бетоне, мс⁻¹;

V_{У3,d,min} - минимальная дифференциальная скорость распространения ультразвука в бетоне, мс⁻¹.

Изобретение относится к области строительства и может быть использовано на строительных объектах, заводах по изготовлению железобетонных изделий, а также при обследовании эксплуатируемых зданий и сооружений для оперативного неразрушающего определения модуля упругости тяжелого бетона в бетонных и железобетонных конструкциях и изделиях.

Известен способ определения твердости и модуля упругости бетона [1], заключающийся в том, что наносят удар жестким индентором с заданной кинетической энергией W по бетонной конструкции, записывают диаграмму изменения текущих значений скорости индентора V от времени t в процессе удара, получают по данным диаграммы V = f(t) диаграмму зависимости значений контактной силы P от глубины вдавливания индентора α , определяют по диаграмме V = f(t) максимальную предударную скорость индентора V₀ и скорость отскока индентора V₁, а по диаграмме P = f(α) - максимальную контактную силу P_{max} и остаточную глубину вдавливания α_r , определяют твердость бетона H и модуль упругости бетона E в соответствии с выражениями

$$\mathrm{H}=\frac{\mathrm{P}_{\mathrm{max}}}{\pi\mathrm{D}\alpha_{\mathrm{r}}},$$

$$E = kH^{\frac{5}{4}} \left(\frac{V_0}{V_1}\right)^2 \left(\frac{D^3}{W}\right)^{\frac{1}{4}},$$

где D - диаметр контактного наконечника индентора;

k - коэффициент, зависящий от физико-механических свойств материала индентора, $k \approx 1.6$.

Недостатком данного способа являются высокая погрешность определения модуля упругости бетона в контролируемой зоне конструкции вследствие различий упругопрочностных свойств тонкого 5...15 мм приповерхностного слоя бетона и внутренних областей бетонного массива. Указанное различие свойств бетона обусловлено, главным образом, различием условий уплотнения внешних и внутренних слоев бетонной смеси при ее укладке в форму опалубки, а также различием и нестабильностью условий тепло- и влагообмена внутренних и внешних областей твердеющего бетона конструкции при его выдерживании, из-за колебаний температуры, влажности и интенсивности движения окружающего воздуха. Оценки физико-механических свойств бетона поверхностного слоя конструкции будут искажены, соответственно, и итоговые оценки твердости и модуля упругости массива бетона контролируемой зоны конструкции приобретут дополнительную погрешность.

Задача, решаемая заявляемым способом, заключается в повышении точности и достоверности определения модуля упругости бетона железобетонных и бетонных конструкций.

Поставленная задача решается тем, что на поверхности бетонной конструкции размечают участок контроля, в границах которого наносят удар жестким индентором с заданной кинетической энергией W, записывают диаграмму изменения текущих значений скорости индентора V от времени t в процессе удара, получают по данным диаграммы V = f(t) диаграмму зависимости контактной силы P от глубины вдавливания индентора α , определяют по диаграмме V = f(t) максимальную скорость индентора V_0 и скорость отскока индентора V_1 , а по диаграмме $P = f(\alpha)$ - максимальную контактную силу P_{max} и остаточную глубину вдавливания a_r , определяют твердость H бетона поверхностного слоя участка контроля бетонной конструкции из выражения:

$$H = \frac{P_{max}}{\pi D\alpha_r},$$

где D - диаметр контактного наконечника индентора,

и модуль упругости Е бетона поверхностного слоя участка контроля бетонной конструкции из выражения

$$E = kH^{\frac{5}{4}} \left(\frac{V_0}{V_1}\right)^2 \left(\frac{D^3}{W}\right)^{\frac{1}{4}},$$

где k - коэффициент, зависящий от физико-механических свойств материала индентора, $k \approx 1.6$,

далее на участке контроля устанавливают излучающий и принимающий ультразвуковые преобразователи и определяют значения времени распространения Т ультразвука и расстояния L между ультразвуковыми преобразователями; сдвигают последовательно по одной линии ультразвуковые преобразователи до достижения максимального значения дифференциальной скорости V_{У3,d} распространения ультразвука в бетоне, которую определяют как отношение приращения расстояния ΔL между излучающим и принимающим ультразвуковыми преобразователями к приращению времени распространения ΔT ультразвука в бетоне, далее определяют модуль упругости E_c бетона бетонной конструкции из выражения

$$E_{c} = 1,05 \cdot E \left(\frac{V_{V3,d,max} (L_{max} - L_{min})}{V_{V3,d,min} L_{max} - V_{V3,d,max} L_{min}} \right)^{2},$$

где L_{min} - расстояние между излучающим и принимающим ультразвуковыми преобразователями, для которого зарегистрирована минимальная дифференциальная скорость ультразвука в бетоне, м;

L_{max} - расстояние между излучающим и принимающим ультразвуковыми преобразователями, для которого зарегистрирована максимальная дифференциальная скорость ультразвука в бетоне, м;

 $V_{\text{V3,d,max}}$ - максимальная дифференциальная скорость распространения ультразвука в бетоне, м c⁻¹;

 $V_{\rm V3,d,min}$ - минимальная дифференциальная скорость распространения ультразвука в бетоне, м $\cdot c^{-1}$.

Сущность изобретения поясняется фигурами.

На фиг. 1 приведена схема выполнения измерений: 1 - контролируемое изделие; 2 - области бетона, участвующие в передаче ультразвука от излучающего к принимающему ультразвуковому преобразователю; 3 - излучающий и принимающий ультразвуковые преобразователи; 4 - индентор; 5 - область индентирования бетона. На фиг. 2 приведена диаграмма зависимости силы индентирования Р от внедрения индентора α. На фиг. 3 приведена диаграмма зависимости скорости индентора V от времени t.

Способ осуществляют следующим образом. Измерение скорости распространения ультразвука V_{y3} на размеченном участке контроля бетонной конструкции осуществляют таким образом, чтобы область бетона, участвующая в передаче ультразвука от излучающего к принимающему ультразвуковому преобразователю, включала в себя область индентирования. В процессе ультразвуковых измерений расстояние L между ультразвуковыми преобразовательно по одной линии ультразвуковые преобразователи на расстояние ΔL . На каждом шаге регистрируют значение дифференциальной скорости распространения ультразвука в бетоне $V_{y3,d}$, которую определяют как отношение приращения расстояния ΔL между излучающим и принимающим ультразвуковыми преобразователями к приращению времени распространения ΔT ультразвука. Из полученного ряда значений дифференциальной скорости берутся минимальное $V_{y3,d,min}$ и максимальное $V_{y3,d,max}$ значения, а из ряда значений расстояния между преобразователями - значения L_{min} и L_{max}, для которых зарегистрированы соответственно минимальная и максимальная дифференциальные скорости.

Рассмотрим пример реализации предлагаемого способа определения прочности бетона в конструкциях. На боковой поверхности контролируемой конструкции - монолитной балки сечением 400×250 мм из бетона проектного класса по прочности C35/45 - производим разметку области индентирования и позиций установки ультразвуковых преобразователей участка контроля: точки установки преобразователей размечаем на прямой линии симметрично относительно области индентирования, с шагом 50 мм. В области индентирования производим удар индентором массой m= 0,164 кг с кинетической энергией W = 1,63 Дж. Регистрируем скорость движения индентора V. Зависимость скорости движения индентора V от времени t представлена на фиг. 2. Максимальная скорость (в момент касания поверхности бетона) V_0 = 4,46 м·c⁻¹, скорость отскока V_1 = 1,85 м·c⁻¹. Процессором производится обработка диаграммы V = f(t), в результате получаем диаграмму зависимости контактной силы от глубины вдавливания индентора P = f(α), представленную на фиг. 3, из которой определяем значения максимальной силы P_{max} = 9,32 кН и остаточной глубины вдавливания индентора макеимальной силы Р_{мах} = 9,32 кН

$$H = \frac{P_{max}}{\pi D\alpha_r} = \frac{9320}{3,1416 \cdot 0,029 \cdot 328 \cdot 10^{-6}} = 311,9 \text{ MITa}$$

и модуля упругости Е

$$E = kH^{\frac{5}{4}} \left(\frac{V_0}{V_1}\right)^2 \left(\frac{D^3}{W}\right)^{\frac{1}{4}} = 1,6 \cdot (311,9 \cdot 10^6)^{\frac{5}{4}} \left(\frac{4,46}{1,85}\right)^2 \left(\frac{0,029^3}{1,63}\right)^{\frac{1}{4}} = 24,1 \,\Gamma\Pi a$$

Определяем значения времени распространения ультразвука, одновременно меняя позиции установки излучающего и приемного преобразователей с шагом 5 см таким образом, что приращение базы измерения составило $\Delta L = 0,1$ м. В таблице приведены значения времени распространения ультразвука T и расчетные значения скорости V_{V3} и V_{V3 d}.

<u> </u>		2 I			
База L, м	0,1	0,2	0,3	0,4	0,5
Время Т, мкс	24,2	47,7	70,9	94,3	118,0
ΔL, м	0,1	0,1	0,1	0,1	0,1
ΔΤ, мкс	24,2	23,5	23,0	23,4	23,7
V _{y3} , м·c ⁻¹	4132	4197	4244	4253	4237
V _{y3,d} м·c ⁻¹	4132	4263	4341	4280	4212

Минимальное значение дифференциальной скорости распространения ультразвука составило $V_{y_{3,d,min}} = 4132 \text{ м} \cdot \text{c}^{-1}$ для $L_{min} = 0,1 \text{ м}$; максимальное значение дифференциальной скорости распространения ультразвука составило $V_{y_{3,d,max}} = 4341 \text{ м} \cdot \text{c}^{-1}$ для $L_{max} = 0,3 \text{ м}$.

Определяем модуль упругости бетона $E_{\rm c}$ в бетонной конструкции

$$E_{c} = 1,05 \cdot E \left(\frac{V_{y3,d,max} (L_{max} - L_{min})}{V_{y3,d,max} L_{max} - V_{y3,d,max} L_{min}} \right)^{2} = 1,05 \cdot 24,1 \cdot \left(\frac{868,2}{805} \right)^{\sqrt{2}} = 29,4 \ \Gamma \Pi a$$

Испытание бетона в зоне контроля экспертным методом - прессовыми испытаниями образцов-кернов - дало следующее среднее значение модуля упругости: $E_c^* = 28,5 \ \Gamma \Pi a$.

По отношению к оценке модуля упругости, полученной испытаниями кернов, относительная погрешность определения модуля упругости предлагаемым методом составила - $\delta E_c = (29,4-28,5)/28,5 = 0,032$ (3,2%). Относительная погрешность для альтернативного метода составила - $\delta E = (28,5-24,1)/28,5 = 0,154(15,4\%)$.

Положительный эффект данного способа достигается за счет того, что оценка модуля упругости бетона осуществляются с учетом различий упруго-прочностных свойств поверхностного слоя бетона и его внутренних областей.

Источники информации:

1. Патент ВҮ 16469, МПК G 01N 33/38, 3/30, 3/48, 2012.

Фиг. 3

Национальный центр интеллектуальной собственности. 220034, г. Минск, ул. Козлова, 20.