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ABSTRACT

In this article modal analysis of reinforced concrete structures by the
Finite Element Method is reviewed. A list of simplifications — implemented
within idealization of the structural scheme at the calculation phase — that
reduce the reliability of the results is provided. Out of the necessity to use
idealizations, the Finite Element Method allows for the possibility of creat-
ing multiple alternative computational models for each structural model re-
spectively, and there are many alternative calculation results. Consequently,
the calculation of reinforced concrete structures always leads to more than
a single result. Idealization of geometric shape has the greatest influence on
the variability of results. Accordingly, the need to use solid finite elements in
calculations of reinforced concrete structures including rod and slab elements
becomes apparent. This will provide means to abandon the subjective con-
struction of the design model of the structure. In addition to traditional cal-
culations of the stress-strain state from the action of static load for a number
of structures, a modal analysis should be performed (dynamic calculation).
Its purpose is to determine the shapes and free oscillation frequencies in or-
der to determine the correctness of the structural scheme by the first shapes
and compare the values of natural frequencies with the regulatory require-
ments. Since the significant need for computational resources poses a natural
limitation of the use of solid finite element models for modal analysis, the
effectiveness of this method of calculation should be established. The article
showed the effect of applying the idealization of the geometric shape on the
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results of the modal analysis by comparing two calculations of the FEM of
one structure and concluded that solid finite elements should be used for the
calculation of reinforced concrete frame structures.

Keywords: reinforced concrete, the Finite Element Method, solid
finite elements, modal analysis

For citation: Basakou S., Liashkevich A. Modal analysis of three-
dimensional finite element models of reinforced concrete structures.
Contemporary Issues of Concrete and Reinforced Concrete: Collected
Research Papers. Minsk. Institute BelNIIS. Vol. 10. 2018. Pp. 11-18.
https://doi.org/10.23746,/2018-10-01

BocakoB Cepreit BUKTOPOBMUY, A-p TEXH. HAYK, NPOGECCOP, FAABHbII HayUYHbI
COTPYAHMK Hay4HO-UCCAEAOBATEABCKOM AabopaTtopuu, PYI «MHCTUTYT
BeAHUUC» (r. MuHcK, benapycb)

NewkeBuu Oner HUKOAAEBUY, KaHA. TEXH. HAyK, reHepaAbHbI AMPEKTOP,
PYN «UHctutyT BeAHUUC» (r. MuHCK, Beaapychb)

MOAAAbHbIA AHAAU3 NPOCTPAHCTBEHHbIX
KOHEYHO-3NAEMEHTHbIX MOAEAEN YXEAE3OBETOHHbIX
KOHCTPYKLIUU

AHHOTALMUA

B cmambe paccmampugaemcsi npobyiema 8bNoNHeHUsT MOOAIbHOZ0
AHANU3A Jicese300emMOHHbIX KOHCMPYKUUTL MemOoOOM KOHEUHbBLX 3J1eMeH-
moe. TIpugodumcsi nepeueHsb YNpoweHull, peanrusyemblx 8 pamKkax ude-
aU3ayUU KOHCMPYKMUBHOU cXeMbl HA cMAadUU BbINOJHEHUS PACHeMOs,
KOmopble CHUXcaom 00CMO8ePHOCMb pe3yibmamos. Memoo KOHeuHbLX
3/1eMeHMo8 No NpuulHe HeobX00UMOCMU UCNONIb308AHUS Udeanu3ayuil
donyckaem B03MONCHOCMb CO30AHUS MHONCeCmed 8apuaHmMos pacuem-
HbLX MoOeiell 0151 00HOLL U MOl e KOHCMPYKMUBHOU MoOeau, coomaem-
CMBeHHO, Cyujecmayem U MHOX#eCma0 OIU3KUX 8APUAHIMO8 Pe3yibmamos
pacuema. Takum ob6pasom, pacuem sicene300eMmoHHbLX KOHCMPYKUULL 8cee-
da donyckaem He eOuHcmaeHHblil pe3ynsmam. Haubonviuee snusivue Ha
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8apuabesibHOCMb Pe3ybmamos okasvleaem udedu3auus 2eomempuue-
ckotl gpopmbl. CoomeemcmeeHHO, 0Ue8UOHbIM CMAHOBUMCS UCNOIb308A-
HUe 00BeMHbIX KOHEUHbIX ANeMEeHMO8 NPU pacuemax xcese306emoHHbLX
KOHCMPYKUUTL, COCMOSIUUX 8 MOM YUCJIe U3 CMEPHCHEeBbIX U NIAUMHBLX dJle-
MeHmMo8. Omo Nno38oUM 0MKaA3AMbC 0M Cy6veKMuBH020 NOCMPOEHUS.
pacuemtotl Modeau KoHcmpykuuu. TTomMumo mpaoutyuoOHHbIX PAcyemos
HANPsYCeHHO-0eOPMUPOBAHHO20 COCMOSHUSL om delicmeust cmamuue-
CKOll Hazpy3KU 01 pA0a KOHCMPYKUULL He06X00UMO 8bINOJIHEHUE MOOATb-
HO20 aHanusa (OuHamuueckozo paciema). Ezo uens cocmoum e onpedese-
HUU hopm u wacmom cobcmaeHHbIX KoebaHUll ¢ mem, UmobblL N0 Nepebim
gopmam onpedenums KOPPEKMHOCMU KOHCMPYKMUBHOIL cXeMbl U CPaAB-
HUMb 3HAUEHUS. COOCMBEHHBIX UACMOM ¢ HOPMAMUBHbLIMU Mpebo8aHuU-
amu. TTockonbKy ecrmecmeeHHbIM 02paHuueHUeM UCNONb308aHUSL 00BeM-
HbIX KOHEUHO-2/IeMEeHMHbIX MoOesiell 011 MOOAIbHO20 AHANU3A ABJIemcs
3HAUUMeNbHASL NOMPeOHOCMb 8 8bIUUCIUMEJILHBLX PeCypCax, Heobxooumo
ycmaxosums aggexkmueHocms 0aHHO20 memooa pacuema. B cmamee Ha
conocmasnieHuu 08yx pacuemos MK3 00HO020 U M020 Yce COOPYHCeHUS NO-
KA3aHO 8IUSTHUE NPUMEHEHUS U0eanU3ayuUl 2e0Mempuueckoll popmul HA
DPe3ybmamaul MOOAIbHO20 AHAIUZA U COeIAH 8bL800 0 He0OX0OUMOCMU UC-
NOb308AHUS 06BEMHBLX KOHEUHBLX A7IeMeHMOo8 0/l pacuema KapKacHblX
Hce1e300eMOHHbBIX KOHCMPYKUULL.

KirodeBble cI0Ba: )Kejae300eTOH, METO/ KOHEUHBIX 3JIEMEHTOB,
0oO6BbeMHbBIE KOHEUHBIE 3JIEMEHTHI, MOZJAIbHBIN aHaIN3

Jna nutupoBaHmusa: bocakos, C. B. MoganbHBIM aHaIU3 IPo-
CTPAHCTBEHHBIX KOHEYHO-JIEMEHTHBIX MOJeNel Kele300eTOHHBIX
koHcTpykuwmii / C. B. Bocakos, O. H. JlenrkeBu4 // I1po6eMsl coBpe-
MeHHOro 6eToHa U ’kejne3006eToHa : ¢6. Hay4. Tp. / VIH-T BentHUVIC;
pezako:n.: O. H. JlemikeBud [u Ap.]. — Munck, 2018. — Beim. 10. - C. 11-
18. https://doi.org/10.23746,/2018-10-01

INTRODUCTION. THE PROBLEM OF IDEALIZATION OF
REINFORCED CONCRETE STRUCTURE MODELS

Reducing errors when performing calculations of reinforced
concrete structures and increasing the correctness and reliability of
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the final results requires the use of a minimum number of simplifying
assumptions and premises. The main difficulty lies in the preparation
of the design model, implementation and evaluation of calculations of
reinforced concrete structures using the Finite Element Method (FEM).
A key factor in modeling a real structure is the need for idealization:

1) of a geometric shape, which provides conditional division of
a model into three-dimensional (soil foundation), two-dimensional
(floors and walls) and linear (columns and beams) elements;

2) of a structure, where it is impossible to take into account
absolutely all the properties of the structures in the model, so it is
simplified when taking into account the basic physical properties;

3) of kinematic relations and external force actions, where the
nodes of the connecting elements and the boundary conditions in most
cases are difficult to describe numerically.

Real elements of buildings or structures have shapes and sizes,
while at the same time, in order to simplify modeling and reduce the
consumption of computing resources, in general, finite elements (FE)
with infinitely small thicknesses are used. Dimensions of a reinforced
concrete structure together with characteristics of concrete are
considered as indicators of stiffness of the section. For example, any
column is modeled by a finite element in the form of a line with a cross
section in the form of an infinitely small point, and the floor panel
is in the form of a slab with infinitely small thickness. This approach
allows us to significantly simplify mathematical models and perform
selection of reinforcement, while their dimensions are minimal. The
disadvantage of this approach is the need to use finite elements that
describe physical essence of behavior of the loaded structure as closely
as possible, which can pose difficulties in assessing the impact of
dimensions of elements on this ratio. Idealization greatly simplifies the
calculations, but leads to a decrease in their accuracy and the need for
additional evaluation and interpretation. For example, a surge in the
values of force appears due to the idealization of structural elements by
assigning to them infinitely small cross-sectional sizes in the calculation
model. No such phenomena is observed in the real structures. Various
methods of smoothing such effects require substantial efforts and
provide a subjective implementation [1], and also require appropriate
qualifications of the analysts. The main disadvantage of this approach
is the adoption of assumptions involving the use of so-called “perfectly

14



rigid bodies”. As a result of applying this approach to the calculations
of reinforced concrete structures, in the design process — from the
point of developing a structural model of an object to obtaining the
final working documentation — a series of “transitions” is required
between conditionally three-dimensional and two-dimensional (or
linear) representations of the object and its elements, which requires
the participation of qualified engineers to perform calculations, and
leads to an infinite variation of the calculation results.

MODAL ANALYSIS OF REINFORCED CONCRETE STRUCTURES

The apparent and simplest solution to this problem is the use of
solid finite elements for the calculation of reinforced concrete frame
buildings. To date, bulk finite elements are applicable even to the
modeling of thin three-dimensional shell-like structures of different
curvature [2]. However, for the purpose of mass design, modeling by
solid finite elements is associated with a number of computational
difficulties associated primarily with the size of the resolving matrix
of equations, and the need to comply with the design standards when
selecting reinforcement.

The above will be confirmed by analyzing the results of dynamic
calculations of a single-story building with a reinforced concrete frame
according to two models. Note that no such comparison is known to
have been made by any author in the scientific literature.

— traditional model — created from FE rods and shells of zero

curvature (Figure 1);

— model created from parallelepiped FE (Figure 2).

External load is represented by the own weight of the building.

As is known, free oscillations of a linear system with n degrees of
freedom without taking into account resisting forces are described by
a system of ordinary differential equations.

[MI{U} + [K]{u} = {0},

where u is a vector—column of displacement;

[M] and [K] are mass and stiffness matrices, respectively.

As a result, with harmonic oscillations of a building, this task
is reduced to the search for eigenfunctions and eigenvalues of the
determinant of a system of resolving linear algebraic homogeneous
equations [3].
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Figure 1. Traditional finite element model of a one-story building

Figure 2. Finite element model of a one-story building of solid FEs

It should be noted that attempts to bring the masses to the
nodes of the FE model will prevent the correct modal analysis of
the system. The only way to reduce the amount of computation is to
reduce the number of nodes in the system, provided that there is no
loss of accuracy. Comparison of the results of calculations of these
two finite element models confirm the above statement (Tables 1
and 2).
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Table 1

Eigenvalues, eigenfrequencies, periods of oscillations of the finite
element model shown in Figure 1

Item | Eigenvalues Frequencies Periods | Distribution Modal
No. Coefficient Mass
rad/s Hz s in %
1 0.039263 25.47 | 4.06 0.2466 4.034301 32.2 32.2
2 0.039217 25.50 | 4.06 0.2463 3.938469 30.7 62.9
3 0.033024 30.28 | 4.82 0.2074 -0.004602 0.0 62.9
4 0.017197 58.15 | 9.26 0.1080 0.125175 0.0 62.9
5 0.016966 58.94 | 9.39 0.1065 -0.046691 0.0 62.9
6 0.016855 59.33 9.45 0.1058 -0.097134 0.0 62.9
7 0.016721 59.80 9.52 0.1050 -1.973780 7.7 70.6
8 0.015525 64.41 | 10.26 | 0.0975 0.036006 0.0 70.6
9 0.015266 65.51 | 10.43 0.0959 0.009510 0.0 70.6
10 0.014696 68.05 | 10.84 | 0.0923 -3.052237 18.4 89.1
11 0.014192 70.46 | 11.22 0.0891 -0.037909 0.0 89.1
Table 2

Eigenvalues, eigenfrequencies, periods of oscillations of the finite
element model shown in Figure 2

Item | Eigenvalues | Frequencies Periods Distribution Modal
No. Coefficient Mass
rad/s Hz s in %
1 0.029806 33.55 5.34 0.1872 4.086401 31.8 31.8
2 0.029671 33.70 5.37 0.1863 -4.059780 31.4 63.2
3 0.025190 39.70 6.32 0.1582 0.014038 0.0 63.2
4 0.013203 75.74 | 12.06 0.0829 0.252577 0.1 63.2
5 0.013034 76.72 | 12.22 0.0819 0.064970 0.0 63.3
6 0.012976 77.07 | 12.27 0.0815 -0.119207 0.0 63.3
7 0.012872 77.69 | 12.37 0.0808 -1.851280 6.5 63.3
8 0.012312 81.22 | 12.93 0.0773 0.001081 0.0 69.8
9 0.012124 82.48 | 13.13 0.0761 -0.097063 0.0 69.8
10 0.011730 85.25 | 13.57 0.0737 -3.162998 19.0 88.9
11 0.011491 87.02 | 13.86 0.0722 0.048630 0.0 88.9
CONCLUSION

Comparison and analysis of the results of calculations in Tables 1
and 2 demonstrates the following:
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1) the types of eigenforms match, but in the first two flexural
modes of oscillations, the directions of oscillations differ;

2) the distribution of local maxima of modal masses match with
the numbers of eigenfrequencies;

3) there are significant differences in the values of eigenfrequencies
—up to 32 %;

4) the idealized model shows a partial loss of the vertical load from
the dead weight;

5) the type and nature of the distribution of static deformations
in the models are the same, while the absolute value of the maximum
deflections differ by up to 67 %.

Obviously, the difference in computational models can seriously
affect the values of the determined dynamic forces and displacements
in dynamic calculations. Therefore, a significant influence of the
idealization of the geometric shape of the reinforced concrete structure
on the results of the modal analysis has been established. In practice, this
circumstance should be taken into account when calculating objects for
which the frequency value of the first mode of oscillation is normalized.
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