Аннотация

Выполнен обзор современного состояния в области развития энергетических технологий с использованием топливных элементов. Предложены и проанализированы перспективные технологические схемы когенерационных установок на основе комбинации топливных элементов, паросиловых установок и газотурбинных установок с внешним подводом теплоты.

ANNOTATION

A review of the current state of energy technologies development using fuel cells was performed. Advanced technological schemes of cogeneration plants based on a combination of fuel cells, steam power plants and gas turbines with an external supply of heat were proposed and analyzed.

Энергетическая система для биогазовых комплексов на базе топливных элементов

В.А. Седнин, д. т. н., профессор, заведующий кафедрой «Промышленная теплоэнергетика и теплотехника», БНТУ А.А.Чичко, А.А. Матявин, магистранты кафедры «Промышленная теплоэнергетика и теплотехника», БНТУ

Утилизация промышленных и бытовых отходов является одной из основных проблем современности. Одним из вариантов переработки канализационных стоков является их сбраживание с получением биогаза. В настоящее время на практике применяют ряд технологий использования биогаза на очистных сооружениях в энергетических целях. В первую очередь, это либо прямое сжигание биогаза в котлоагрегатах для получения тепловой энергии, либо его использования как топлива в когенерационных установках (газопоршневых и газотурбинных) для совместного производства электрической и тепловой энергии [1]. Одним из новых направлений являются энергетические объекты на базе высокотемпературных топливных элементов. На сегодняшний день в ряде стран (США, Италия, Япония и др.) [2-5] введены в эксплуатацию энергетические установки на топливных элементах, работающие как на природном, так и синтетических газах, полученных из различных органических отходов (биогаз, свалочный газ и т. п.). Например, на электрической станции на топливных элементах в Онтарио (США, штат Калифорния), установленной на региональной водоочистной станции, общий КПД составляет 70 % [3].

Высокотемпературные (рабочая температура 600–1000 °C) топливные элементы представляют собой электрохимические устройства, преобразующие химическую энергию топлива непосредственно в электрическую энергию и теплоту. Преимущества этих элементов — высокий КПД, низкое воздействие на окружающую среду. Главным же достоинством-высокотемпературного топливного элемента является возможность использовать в качестве топлива не только природный газ, но и биогаз, угольный и рудничный газы, синтетические газы с высокой теплотой сгорания.

Принципиальная схема топливного элемента изображена на рис. 1 [5]. Топливный элемент состоит из двух электродов, разделённых электролитом, и систем подвода топлива — на один электрод и окислителя на другой. Внешней электрической цепью топливный элемент соединён с нагрузкой, которая потребляет электроэнергию.

К катоду подводится воздух, кислород проходит через поры на катоде, диссоциирует, ионизируется и поступает через электролит в зону реакции на стороне анода по следующей реакции:

$$V_2O_2 + 2e^- \rightarrow O^-.$$
 (1)

К аноду подводится топливо, содержащее водород и монооксид углерода. В зоне реакции атомы кислорода окисляют водород до воды, а моноооксид углерода до диоксида углерода, образующиеся при этих реакциях свободные электроны проходят через внешнюю цепь на катод:

$$O^{=} + H_{2} \rightarrow H_{2}O + 2e^{-}, \qquad (2)$$

 $O^{=} + CO \rightarrow CO_{2} + 2e^{-}.$ (3) Для достижения необходимого напряжения и мощ-

ности топливные ячейки объединяют в батареи. В це-, лом предусматривается подключение нескольких ячеек блока последовательно через электропроводящие соединения.

Рис. 1. Схема топливного элемента

В настоящее время разработано много разнообразных технологических схем энергетических установок на твёрдых элементах [5–7]. На рис. 2 представлена схема энергетической установки с твёрдооксидным топливным элементом и газовой турбиной компании Siemens-Westinghouse [6].

Воздух поступает в фильтр VI, где очищается от примесей. В компрессоре V воздух сжимается, далее часть его поступает в теплообменник IX, где нагревается за счёт теплоты уходящих газов из газовой турбины ІV, и далее следует в камеру сгорания VII. Оставшаяся часть воздуха поступает в реактор Х и топливный элемент I в качестве окислителя. Топливо (биогаз, природный газ) также нагревается в теплообменнике ІХ, при необходимости очищается от примесей серы в десульфуризаторе III, затем часть топлива подаётся в реактор, а вторая часть в камеру сгорания Х. В реакторе образуются продукты неполного горения топлива СО+Н., которые затем подают в твёрдооксидный топливный элемент (ТОТЭ), в котором за счёт химической реакции вырабатывается электрическая энергия. На катоде ТОТЭ происходит диссоциация, а затем ионизация кислорода. Выхлоп вместе с продуктами реакции поступает в камеру сгорания Х, а оттуда продукты сгорания поступают в газовую турбину IV. Общий электрический КПД такой гибридной установки составляет около 70 %.

На рис. 3 и 4 показаны ещё два варианта технологических схем энергетических установок с топливными элементами, также реализованные Siemens-Westinghouse [6].

Рис. 2. Схема комбинированной установки на базе ТОТЭ (I — ТОТЭ; II — инвертор; III — десульфуризатор; IV — турбина; V — компрессор; VI — фильтр; VII — камера сгорания; VIII — генератор; IX — теплообменник; X — реактор; 1, 2, 6, 7, 8, 9, 11 — потоки воздуха; 3, 4 — механическая энергия; 5, 10, 12, 13, 14, 18, 19 — потоки топлива; 16, 17 — потоки электрической энергии; 15, 20 — продукты реакции; 21, 22, 23 — продукты сгорания)

Рис. 3. Установка на базе ТОТЭ (I — ТОТЭ; II — инвертор; III — десульфуризатор; IV, V, VI — вентиляторы; VII, VIII — теплообменник; 1, 2, 3 — потоки топлива; 4, 5 — потоки электрической энергии; 6, 7, 8 — потоки воздуха; 9, 10, 11 — продукты реакции; 12, 13, 14 — потоки воды)

Рис. 4. Комбинированная схема ТОТЭ с газовой турбиной (I — ТОТЭ; II — инвертор; III — десульфуризатор; IV — компрессор; V — турбина; VI — фильтр; VII — теплообменник; VIII — генератор; 1, 2, 3, 4 — потоки воздуха; 5, 6 — потоки электрической энергии; 7, 8 — потоки топлива; 9, 12 — продукты реакции; 10, 11 — механическая энергия)

На рис. 3 топливо вентилятором IV через десульфуризаторе ΔC подаётся в ТОТЭ. Воздух вентилятором V направляется в рекуператор VIII, где нагревается продуктами реакции, покидающими ТОТЭ, и далее поступает в ТОТЭ. В ходе химических реакций (1–3) вырабатывается постоянный ток, который преобразуется в переменный в инверторе II. Отходящие из рекуператора продукты реакции охлаждаются сетевой водой в теплообменнике VII. На рис. 4 показан упрощенный вариант схемы, представленной на рис. 2. Сравнительные характеристики последних двух установок приведены ниже в таблице.

Табл. Основные технические параметры технологических схем, представленных на рис. 3 и 4 [6]

Характеристика	Установка по схеме на рис. 3	Установка по схеме на рис. 4
КПД электрический, %	50	60
КПД общий, %	80	80
Количество ячеек, шт.	9216	5760
Давление, бар	1,04	3,0
Мощность, МВт	1	0,8

Известен ещё ряд технологических схем энергетических установок на базе высокотемпературных топливных элементов [5–8]. На рис. 5 представлена схема энергетической установки на основе ТОТЭ с частичным каталитическим окислением. Топливо с воздухом поступают в реактор VI, где происходит его частичное каталитическое окисление:

$$2CH_4 + O_2 \rightarrow 2CO + 4H_2. \tag{4}$$

На выходе получаем топливо с температурой 800 °С, которое подаётся в ТОТЭІ. Второй поток воздуха направляется в компрессор, сжимается, затем поступает в теплообменник VI, где нагревается до температуры

 Рис. 5. Схема ТОТЭ с частичным каталитическим окислением

 (I — ТОТЭ; II — Инвертор: III — камера сгорания; IV — реактор;

 V — компресса
 токи воздуха; 4 — потоки топлива;

 5, 7, 8 — проду
 9, 10 — продукты сгорания;

 11, 12 — потс
 :кой энергии)

Рис. 6. Схема ТОТЭ с риформингом природного газа (I — ТОТЭ; II — инвертор; III — камера сгорания; IV — реактор; V — компрессор; VI, VII, VIII, IX — теплообменники; 1, 2, 3 — потоки воздуха; 4, 5, 13, 14 — продукты реакции; 9, 11, 12 — потоки топлива; 8, 10 вода; 6, 7, 15, 16, 17 — продукты сгорания; 18, 19 — потоки электрической энергии)

700 °С за счёт теплоты продуктов сгорания, и далее также подаётся в ТОТЭ *I*. В результате химических, реакций (1–3) на выходе из ТОТЭ имеем продукты реакции с температурой 800 °С как с катода, так и с анода, которые догорают в камере сгорания *III*.

На рис. 6 показана схема ТОТЭ с риформингом природного газа [5]. Воздух сжимается в компрессоре *V*, подаётся в теплообменник *VI*, где нагревается до температуры 700 °С и поступает в ТОТЭ*I*. Природный газ смешивается с очищенной деминерализированной водой, нагревается в теплообменнике *VIII*.

В реакторе *IV* происходит риформинг, в ходе которого получают смесь водорода и окиси углерода:

$$CH_4 + H_2O \rightarrow CO + 3H_2.$$
 (5)

В теплообменнике VII топливо подогревается до температуры 800 °С и затем подаётся в ТОТЭ I. В ходе химической реакции на выходе из ТОТЭ образуются продукты реакции с температурой 800 °С как с катода, так и с анода, которые догорают в камере сгорания 3. Дымовые газы нагревают воздух в теплообменнике VI, топливо VII и VIII, а также воду в теплообменнике IX.

На рис. 7 представлена схема ТОТЭ с рециркуляцией продуктов сгорания [5]. Топливо (природный газ) сжимается в компрессоре, затем смешивается с продуктами реакции с анода (кислород) в эжекторе и нагнетается в реактор, где в ходе химической реакции образуются водород и монооксид углерода. Смесь при температуре 800 °С подаётся в ТОТЭ*І*. Воздух сжимается в компрессоре *V*, подогревается в теплообменнике *VI* до 700 °С, затем подаётся в ТОТЭ. В ходе химических превращений образуются продукты реакций с температурой 800 °С, которые догорают в камере сгорания *III*.

Рис. 7. Схема ТОТЭ с рециркуляцией продуктов сгорания (I — ТОТЭ; II — инвертор; III — камера сгорания; IV — реактор; V, VII — компрессоры; VI — теплообменник; VIII — эжектор; 1, 2, 3 — потоки воздуха; 4, 5, 11, 12 — продукты реакции; 6, 7 — продукты сгорания; 8, 9, 10 потоки топлива; 13, 14 — потоки электрической энергии)

На рис. 8 изображена схема ТОТЭ с частичным каталитическим окислением. Топливо смешивается с уходящими из ТОТЭ продуктами реакции с анода, в которых содержится кислород, и нагнетается в реактор, где в результате реакции образуются монооксид утлерода и водород с температурой 750 °С, которые подаются в ТОТЭ. Воздух сжимается в компрессоре *V*, догревается в теплообменнике *VI* до температуры 700 °С и подаётся в ТОТЭ.

Авторами было выполнено исследование эффективности применения энергетических установок на базе твердотопливных высокотемпературных элементов для биогазовых комплексов. За основу была принята технологическая цепочка с использованием технологии «сухой» конверсии [9]: сухая конверсия биогаза – реакция окисления на ТОТЭ – утилизация теплоты продуктов сгорания.

В реакторе при реализации технологии «сухой» конверсии биогаза протекает реакция:

$$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2 (\Delta H_1 = 261 \ \text{кДж/моль}), (6)$$

тем самым происходит процесс химической регенерации тепловой энергии.

Синтезированные принципиальные схемы комбинированных энергетических установок, реализующих данную технологию использования биогаза, представлены на рис. 9 и 10. Предполагается, что предварительно биогаз из газгольдеров поступает в десульфуризатор, где очищается от примесей серы и далее поступает в энергетическую установку.

Схема на рис. 9 объединяет топливный элемент с паросиловой установкой на органическом рабочем теле (ОРЦ-модуль). Воздух подается в подогреватель XI, где нагревается уходящими газами из те-

Рис. 8. Схема ТОТЭ с частичным каталитическим окислением (I — ТОТЭ; II — инвертор; III — камера сгорания; IV — реактор; V — компрессор; VI — теплообменник; VII — насос; 1, 2, 3 — потоки воздуха; 4, 5, 6, 9, 13 — продукты реакции; 7, 8 — продукты сгорания; 10, 11, 12 — потоки топлива; 14, 15 — потоки электрической энергии)

Рис. 9. Технологическая схема когенерационной установки на базе топливного элемента и ОРЦ-модуля (I — ТОТЭ; II — преобразователь постоянного тока в переменный; III, IV, V, VI, VII — испаритель турбина, генератор, конденсатор и насос ОРЦ-модуля; VIII, X — камеры сгорания; IX — реактор, XI, XII — теплообменники; 1, 2, 3, 4 — потоки воздуха; 5, 8 — биогаз; 6 — продукты реакции; 7, 10–15 — продукты сгорания; 9 — синтез газ; 16, 26 — электроэнергия; 19, 20, 21, 24 — рабочее тело ОРЦ-модуля; 17, 18 — масло, 22, 23 — сетевая вода; 25 — механическая энергия

плообменника X, и далее разделяется на два потока: один поступает в ТОТЭ *I*, второй — в камеру сгорания *VIII*, куда подаются также часть биогаза. Образующиеся дымовые газы направляются в реактор *IX*, куда подается биогаз для осуществления реакции (6) для конверсии. Полученный синтез-газ поступает в ТОТЭ, в котором вырабатывается электроэнергия. Продукты реакции 6 смешиваются с потоком продуктов сгорания *11* и подаются в камеру сгорания *X*. Образовавшиеся продукты сгорания нагревают термомасло в теплообменнике *XII*, которое в свою очередь передает теплоты ОРЦ-модулю. По расчётам электрический КПД такой установки может составлять 54–57 %.

Рис. 10. Структурная схема комбинированной когенерационной установки на базе топливного элемента и газовой турбины (I — ТОТЭ; II — инвертор; III — парогенератор ОРЦ-модуля; VI — турбина ОРЦ-модуля; VI — электрогенератор ОРЦ-модуля; VI — конденсатор ОРЦ-модуля; VII — питательный насос ОРЦ-модуля; VII — камера сгорания; IX — реактор; X — камера сгорания со встроенным высокотемпературным воздухоподогревателем; XI, XII — теплообменники; XIII — компрессор; XIV — газовая турбина; XV — электрогенератор ГТУ; 1, 2, 3, 4, 11, 12, 14, 15, 11 — потоки воздуха; 5, 8 биогаз; 6 — продукты реакции; 7, 10, 13, 16, 17, 18, 19, 20 — продукты сгорания; 9 — синтез-газ; 21, 22 — термомасло; 23, 24, 27, 28 — органический теплоноситель; 25, 26 — сетевая вода; 29, 32, 33 — потоки электрической энергии; 30, 31 — механическая энергия)

Технологическая схема на рис. 10 объединяет топливный элемент с парогазовой установкой. Последняя состоит из газотурбинной установки с внешним подводом теплоты и ОРЦ-блока. Поток воздуха 1 вентилятором подаётся в теплообменник I, где он нагревается потоком выхлопных газов 2 и далее разделяется на два потока, поток 3 поступает в камеру сгорания VIII, а поток 4 — в ТОТЭ І. В ТОТЭ І также подаётся поток синтез-газа 9, который образуется в реакторе IX по реакции (6). В топливном элементе происходят реакции (1-3), в ходе которых вырабатывается электрическая энергия. Продукты реакции 6 смешиваются с потоком продуктов сгорания 20 и подаются в камеру сгорания высокотемпературного воздухоподогревателя Х и дожигаются. После камеры сгорания Х дымовые газы вместе с потоком рабочего тела газовой турбины 19 подаются в теплообменник XI, где нагревают термомасло, которое в свою очередь поступает в парогенератор ОРЦ-блока. Рабочим телом в газовой турбине в данном случае является воздух. Численные исследования анализа эффективности рассмотренной схемы показывают, что электрический КПД комбинированной когенерационной установки может достигать 70 % при коэффициенте использования топлива до 90 %.

Выводы

Выполненный обзор схем энергетических установок на базе топливных элементов позволил предложить перспективные технологические схемы когенерационных установок для очистных сооружений сельскохозяйственных объектов и городских водоканалов, на которых планируется строительство биогазовых комплексов. Численные исследования этих схем показывают, что электрический КПД может составлять 55–75 % при коэффициенте использования топлива до 90 %.

Литература

 Седнин, В. А. Повышение выработки электроэнергии на биогазовых комплексах городских очистных сооружений / В. А. Седнин, А. В. Седнин, И. Н. Прокопеня, Д. Л. Кушнер // Энергия и Менеджмент. — 2011. — № 5. — С. 18–22.

2. Jakub Kupecki, Janusz Jewulski and Jarosaw Milewski Multi-Level Mathematical Modeling of Solid OxideFuel Cells / J.Kupecki // Clean energy for better environment [Электронный pecypc]. — 2012. — Режим доступа: http: // www.intechopen. com/books/clean-energy-for-better-environment/multi-levelmathematical-modeling-of-solid-oxide-fuel-cells.— Дата доступа: 31.03.2013.

3. Водоочистная станция на отфильтрованных твёрдых отходах [Электронный ресурс]. — 2013. — Режим доступа: http:// cyberland.ws/898-vodoochistnaya-stanciya-na-otfiltrovannyhtverdyh-othodah.html. — Дата доступа: 28.08.2014.

4. R.A. Figueroa, J. Otahal Utility experience with a 250-kW molten carbonate fuel cell cogeneration power plant at NAS Miramar, San Diego/ R.A. Figueroa// Journal of power sources ISS 0378-7753 CODEN JPSODZ / INIST-CNRS, Cote INIST: 17113, 35400007506141.0160.

5. Коровин, Н.В. Топливные элементы и электрохимические установки / Н.В. Коровин. — М.: Издательство МЭИ, 2005. — 280 с.

6. Moreno, A. International Status of Molten Carbonate Fuel Cell (MCFC) Technology / Angelo Moreno, Stephen McPhail, Roberto Bove, 2008.

7. Huppmann, G. New Fuel Cell Applications and Products, MTU CFC Solutions GmbH / Gerhard Huppmann, 2005. London.

8. Siemens-Westinghouse Distributed Generation — The Quiet Revolation // USA. 2005. 20 November. — P. 18.

9 Седнин, В. А. Повышение энергетического потенциала биогаза / В. А. Седнин, О. Ф. Краецкая, И. Н. Прокопеня // Изв. вузов. Энергетика. — 2012. — № 1. — С. 73–77.