ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (12) РЕСПУБЛИКА БЕЛАРУСЬ (19) **ВУ** (11) **9069**

(13) C1
(46) 2007.04.30

(51)⁷ H 01L 31/04, 31/0352, 31/06, 31/078

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(54) ПРЕОБРАЗОВАТЕЛЬ СОЛНЕЧНОЙ ЭНЕРГИИ	
 (21) Номер заявки: а 20031180 (22) 2003.12.16 (43) 2005.06.30 (71) Заявители: Белорусский национальный технический университет; Сычик Василий Андреевич (ВҮ) (72) Авторы: Сычик Василий Андреевич; Сычик Андрей Васильевич; Шамкалович Владимир Иванович (ВҮ) 	 (73) Патентообладатели: Белорусский национальный технический университет; Сычик Василий Андреевич (ВҮ) (56) RU 2080690 C1, 1997. RU 2099818 C1, 1997. EP 0747972 A2, 1996. JP 1090568 A, 1989. JP 9036398 A, 1997. US 4179702 A, 1979. US 4017332 A, 1977. US 5437734 A, 1995.

(57)

1. Преобразователь солнечной энергии, содержащий фоточувствительную структуру типа p-n переход, n-область которого связана с общим омическим контактом посредством слоя менее широкозонного полупроводника n-типа и его сильнолегированного слоя nтипа, a p-область которого связана с просветляющим слоем и омическим контактом посредством варизонного слоя p-типа, слоя широкозонного полупроводника p-типа и его сильнолегированного слоя p-типа, отличающийся тем, что p-n переход выполнен в менее широкозонном полупроводнике, между p-областью которого и варизонным слоем p-типа выполнен слой менее широкозонного полупроводника p-типа, a преобразователь дополнительно содержит вторую фоточувствительную структуру типа p-n переход, отделенную от первой слоем диэлектрика, содержащую слои с противоположными, относительно первой фоточувствительной структуры, типами проводимости и идентичные по уровню легирования и ширине запрещенной зоны, просветляющий слой и омический контакт и выполненную на общем омической контакте.

2. Преобразователь по п. 1, **отличающийся** тем, что ширина слоев менее широкозонного полупроводника n- и p-типов обеих структур составляет (0,5-0,9) диффузионной длины фотогенерированных носителей заряда.

Фиг. 1

Изобретение относится к полупроводниковым фоточувствительным приборам с потенциальным барьером, в частности к преобразователям солнечной энергии, и может быть использовано в электронно-оптических и космических системах в качестве автономных источников электроэнергии.

Известен преобразователь солнечной энергии, описанный в [1], в котором для создания тянущего электрического поля применяется варизонный слой. Однако такой солнечный элемент с указанной структурой обладает сложной конструкцией, невысоким рабочим напряжением и недостаточно высокой стабильностью работы.

В патенте США [2] представлен преобразователь солнечной энергии, который снабжен металлической деталью в форме параллелепипеда, на основании внутреннего объема которого в форме конуса расположена линза Френеля и отражательный элемент. В отверстии вблизи вершины параллелепипеда расположен фотоэлектрический элемент, представляющий структуру в виде двух гетеропереходов, гомоперехода и туннельного диода. Этот преобразователь солнечной энергии обладает малыми рабочими токами, низким КПД и сложной конструкцией.

Прототипом предлагаемого изобретения является преобразователь солнечной энергии, описанный в [3], который содержит фоточувствительную структуру типа p-n переход, полупроводниковый слой из фосфида индия и галлия, просветляющий слой и омические контакты. Просветляющий слой и электрод контактируют с пассивирующим слоем p-n перехода из GaAs, оканчивающегося электродом.

Недостатки прототипа:

а) невысокое выходное напряжение и выходная мощность, поскольку сформированный на p-n переходе и обращенный к свету компонент InP обладает шириной запрещенной зоны $E_g = 1,27$ эB < 1,43 эB (E_g GaAs);

б) невысокая рабочая температура, поскольку используется в структуре преобразователя солнечной энергии узкозонный p-n переход (E_g < 1,3 эВ);

в) отсутствуют сильнолегированные низкоомные полупроводниковые слои между омическими контактами и p-n переходом, что обуславливает резкое повышение сопротивления растекания, то есть дополнительное снижение тока и выходной мощности.

Техническим результатом изобретения является увеличение выходного напряжения, мощности с одновременным увеличением рабочей температуры.

Поставленная задача достигается тем, что в преобразователе солнечной энергии, содержащем фоточувствительную структуру типа p-n переход, n-область которого связана с общим омическим контактом посредством слоя менее широкозонного полупроводника nтипа и его сильнолегированного слоя n-типа, а p-область которого связана с просветляющим слоем и омическим контактом посредством варизонного слоя p-типа, слоя широкозонного полупроводника p-типа и его сильнолегированного слоя p-типа, p-n переход выполнен в менее широкозонном полупроводнике, между p-областью которого и варизонным слоем p-типа выполнен слой менее широкозонного полупроводника p-типа, a преобразователь дополнительно содержит вторую фоточувствительную структуру типа p-n переход, отделенную от первой слоем диэлектрика, содержащую слои с противоположными, относительно первой фоточувствительной структуры, типами проводимости и идентичные по уровню легирования и ширине запрещенной зоны, просветляющий слой и омический контакт и выполненную на общем омическом контакте. Ширина слоев менее широкозонного полупроводника n- и p-типов обеих структур составляет (0,5-0,9) диффузионной длины фотогенерированных носителей заряда.

Фотоэдс холостого хода (U_{am}) предложенного преобразователя солнечной энергии составляет 2,5-2,8 эВ, а допустимая температура T_{α} 150 °C, в то время как для прототипа $U_{am} \cong 0.8$ B, $T_{\alpha} = 100$ °C.

Сущность изобретения поясняет чертеж, где на фиг. 1 изображена конструкция преобразователя солнечной энергии (ПСЭ), а на фиг. 2 - его зонная диаграмма.

Конструктивно ПСЭ содержит общее металлическое основание 1, на котором размещены две фоточувствительные структуры, разделенные слоем диэлектрика 2. Каждая из фоточувствительных структур содержит p-n переход 3, причем p-n переход 3 первой (левой) фоточувствительной структуры связан с общим металлическим основанием 1 посредством п₁-области 4 менее широкозонного слоя полупроводника и его сильнолегированного n₁-слоя 5. На р-обедненной области p-n перехода 3 последовательно размещены p₁-область 6 менее широкозонного слоя полупроводника, p-варизонный слой 7, слой pтипа 8 широкозонного полупроводника и сильнолегированный р⁺-слой 9 широкозонного полупроводника. Р-п переход второй (правой) фоточувствительной структуры связан с общим металлическим основанием 1 посредством p2-области 10 менее широкозонного слоя полупроводника и его сильнолегированного p⁺₂-слоя 11. На n-обедненной области pп перехода 3 последовательно размещены n2-область 12 менее широкозонного слоя полупроводника, п-варизонный слой 13, n₃-слой 14 широкозонного полупроводника и сильнолегированный n₃⁺-слой 15 широкозонного полупроводника. Первый омический контакт 16 ПСЭ, в проеме которого размещен просветляющий слой 17, сформирован на сильнолегированном p⁺-слое 9 широкозонного полупроводника. Второй омический контакт 18 ПСЭ, в проеме которого размещен просветляющий слой 17, сформирован на сильнолегированном n₃⁺-слое 15 широкозонного полупроводника. Омические контакты 16 и 18 ПСЭ имеют внешние выводы 19. Более узкозонный слой первой фоточувствительной структуры с р₁-областью 6, р-п переходом 3, п₁-областью 4 и сильнолегированным n₁⁺-слоем 5 сформирован на общем металлическом основании 1, являющемся омическим контактом, методами молекулярно-лучевой эпитаксии, газофазной или жидкофазной эпитаксии. В качестве материала этого слоя используется полупроводник, обладающий высокой подвижностью носителей заряда, большим временем жизни носителей и возможностью создавать в его объеме сильнолегированные слои. Оптимальным полупроводником для этого слоя является арсенид галлия (GaAs) с шириной запрещенной зоны $E_{g2} = 1,43$ эВ.

Для эффективного поглощения квантов солнечного света (фотонов) с энергий $h\nu \ge E_{g2}$ структурой p₁-область 6, p-n переход 3, n₁-область 4, а также эффективного переноса разделенных p-n переходом 3 генерированных фотоносителей заряда ширина p₁-области 6 и n₁-области 4, как показали результаты эксперимента, должна составлять (0,5-0,9) Ld, где Ld - диффузионная длина фотогенерированных носителей заряда. Толщина сильнолегированного n₁⁺-слоя 5 выбирается из условия минимизации сопротивления n₁-области 4, исключения влияния границы n₁⁺-слой 4 - омический контакт общего металлического основания 1 на разделенные заряды p-n перехода и должна быть выше диффузионной длины основных носителей Ld. Как показали результаты эксперимента, оптимальная толщина n₁⁺-слоя 5 составляет (1,1-2) Ld, причем она возрастает для полупроводников с высокой подвижностью основных носителей. На p₁-области 6 сформирован методом молекулярнолучевой, жидкофазной или газофазной эпитаксии р-варизонный слой 7, представляющий твердый раствор интерметаллического соединения $A_{1x}^{m}A_{2, n}^{m}B^{n}$. Параметр степени концентрации компонента в растворе X изменяется от нуля до единицы, причем со стороны p₁области он представляет материал этой области, например A₂^mBⁿ, а со стороны p-слоя 8 широкозонного полупроводника - материал этого слоя, то есть соединения A₁^mBⁿ. Например, если материалом p₁-области 6 является GaAs с E_{g2} = 1,43 эB, а материалом p-слоя 8 широкозонного полупроводника является AlAs с Eg1 = 2,15 эB, то р-варизонный слой 7 реализуется из материала Ga_xAl_{1-x}As, причем структура нижней границы слоя с параметром X = 1 представляет GaAs, а структура верхней границы слоя представляет AlAs с параметром X = 0. Толщина р-варизонного слоя 7 определяется скоростью изменения его ширины запрещенной зоны от E_{g1} до E_{g2} при изменении X от 0 до 1 и диффузионной дли-

ной неравновесных носителей заряда Ld. Р-варизонный слой 7 создает градиент напряженности электрического поля, ускоряя перенос фотогенерированных носителей заряда. Для достижения оптимального по максимуму разделения генерированных в р-варизонном слое 7 носителей заряда в диапазоне энергии фотонов $E_{g1} \ge hv \ge E_{g2}$ ширина этого слоя не должна превышать диффузионной длины основных избыточных носителей и составляет (0,5-0,9)Ld, причем она максимальная для полупроводников с наиболее высокой подвижностью носителей. В p-слое 8 широкозонного полупроводника генерируются избыточные носители в диапазоне энергии фотонов $hv \ge E_{g1}$. Ширина этого слоя выбирается из условия полного переноса суммарного потока генерированных фотонами солнечного излучения носителей заряда в p^+ -сильнолегированный слой 9 широкозонного полупроводника. Первый омический контакт 16 к p^+ -слою 9 формируется из газовой фазы на этом слое с проемом посредине или в виде решетчатой структуры.

Для повышения коэффициента поглощения фотонов воздействующего солнечного света на поверхность p^+ -слоя 9 широкозонного полупроводника или на поверхность n_3^+ -слоя 15 широкозонного полупроводника в области проема или проемов решетчатой структуры первого омического контакта 16 и второго омического контакта 18 нанесен просветляющий слой 17 (прозрачный антиотражательный материал), оптическая плотность которого выше, чем у p^+ -слоя 9 и n_3^+ -слоя 15. В качестве материала просветляющего слоя обычно используются окислы кремния SiO и SiO₂, а оптимальная толщина просветляющего слоя 17 составляет 0,08-0,15 мкм. Толщина первого и второго омического контактов составляет 1-5 мкм, а занимаемая ими площадь составляет соответственно 6-12 % от p-слоя 9 и n_3^+ -слоя 15.

С аналогичными толщинами и по аналогичной технологии сформирована на общем металлическом основании 1 вторая фоточувствительная структура, то есть сильнолегированный p_2^+ -слой 11, p_2 -область 10 менее широкозонного слоя полупроводника, p-n переход 3, n_2 -область 12 менее широкозонного полупроводника, n_2 -варизонный слой 13, n_3 -слой 14 широкозонного полупроводника, сильнолегированный n_3^+ -слой 15 широкозонного полупроводника и второй омический контакт 18.

Слой диэлектрика 2 наносится на общее металлическое основание 1 после формирования на нем первой фоточувствительной структуры. Слой диэлектрика 2 представляет оксид кремния, для формирования которого используются фотолитография и пиролитическое разложение тетраэтоксилана.

Преобразователь солнечной энергии работает следующим образом.

При воздействии квантов солнечного света на рабочую поверхность первой и второй фоточувствительных структур ПСЭ со стороны решетчатых омических контактов 16 и 18 фотоны с энергиями $E_i < E_{g1}[p^+, n^+]$, где $E_{g1}[p^+, n^+]$ - ширина запрещенной зоны p^+ -слоя 9 и n_3^+ -слоя 15, сформированных из одинакового материала, проходят просветляющий слой 17, p^+ -широкозонный сильнолегированный слой 9, n_3^+ -широкозонный сильнолегированный слой 7, n_2 -варизонный слой 13 и p-n переход 3, где фотоны с энергиями $E_{g1} \ge E_i \ge E_{g2}$ поглощаются в варизонных слоях 7, 13, обедненных областях p-n перехода 3 и в p_1 -, n_1 - (6, 4) областях в p_2 -, n_2 -областях (10, 12) менее широкозонного полупроводника и создают в поглощающих областях избыточную концентрацию носителей заряда. Фотоны с энергией $E_i > E_{g1}$ в поглощающих фотоны p-слое 8 и n-слое 14 широкозонного полупроводника также создают избыточную концентрацию носителей заряда в этих областях. Избыточная концентрация фотогенерированных электронов и дырок в каждой из фоточувствительных структур определяется в соответствии с зависимостями:

$$\Delta n = \beta \eta I \tau_{p}; \qquad \Delta n = \beta \eta I \tau_{p}, \qquad (1)$$

где β - квантовый выход; η - коэффициент поглощения света; I - интенсивность света; τ_n, τ_р - время жизни избыточных электронов и дырок. Фотогенерированные в p-слое 8, pваризонном слое 7, p₁-области 6 и n₁-области 4 дырки разделяются p-n переходом 3 и движутся под действием электрического поля p-n перехода 3 и электрического поля pваризонного слоя 7 к омическому контакту 16, а фотогенерированные электроны в указанных слоях и областях движутся под действием электрического поля р-варизонного слоя и р-п перехода к общему металлическому основанию 1, где и рекомбинируют. Омический контакт 16 находится под положительным потенциалом вследствие притока к нему дырок. Фотогенерированные в n_3 -слое 14, n_2 -варизонном слое 13, n_2 -области 12, обедненных областях p-n перехода, p₂-области 10 электроны и дырки разделяются p-n переходом 3, причем электроны под действием электрического поля p-n перехода 3 и электрического поля n₂-варизонного слоя 13 устремляются к сильнолегированному n₃⁺-слою 15 и омическому контакту 18, а дырки в указанных слоях и областях движутся под действием электрического поля варизонного слоя и p-n перехода к общему металлическому основанию 1, где и рекомбинируют. Омический контакт 18 находится под отрицательным потенциалом вследствие притока к нему электронов. Первая и вторая фоточувствительные структуры через общее металлическое основание 1 соединены последовательно, поэтому фототок в них будет одинаков.

Вследствие разделения зарядов через p-n переход 3 течет ток

$$I_{a} = I_{S} \left[exp \left(\frac{eU_{a}}{kT} \right) - 1 \right] - I_{\Phi}$$
⁽²⁾

и возникает фотоэдс в каждой фоточувствительной структуре ПСЭ, максимальное значение которой при холостом ходе

$$E_0 = U_{am} = \frac{kT}{e} ln \left(\frac{I_{\Phi}}{I_s} \right), \qquad (3)$$

где I_{ϕ} - максимальная плотность фототока, соответствующая данной освещенности; I_s - ток насыщения p-n перехода; U_a - приложенное к p-n переходу собственное напряжение. Напряжение на разомкнутых омических выводах ПСЭ $U_{a\Sigma} = 2E_0 = 2U_{am}$, то есть равно удвоенному значению напряжения, создаваемого на каждой из фоточувствительных структур как соединенных последовательно.

В общем случае при заданной интенсивности световой поток, обусловленный избыточными носителями с концентрациями Δn и Δp , определяется выражением:

$$I_{\phi} = e(\Delta n \mu_n + \Delta p \mu_p) E_a. \tag{4}$$

Поскольку фоточувствительными структурами преобразователя солнечной энергии активно поглощается широкий спектр фотонов с энергиями от E_{g1} и выше и до энергий E_{g2} , то избыточные концентрации Δn и Δp в предложенном устройстве значительно выше, чем у прототипа, где активно поглощаются лишь фотоны с энергией, равной ширине запрещенной зоны p-n перехода.

При замыкании на нагрузку внешней цепи преобразователь солнечной энергии отдает в нее мощность

$$P_{a} = I_{a}U_{a\Sigma} = 2U_{a} \cdot I_{S} \left[\left(exp \frac{eU_{a}}{kT} - 1 \right) - I_{\Phi} \right],$$
 (5)

а ее максимальное значение $P_{am} = U_{a\Sigma m} \cdot I_{am}$. При условии равенства значений токов в заявленном устройстве и прототипе (практически $I_{a(3)} > I_{a(n)}$) соотношение их выходных мощностей определяется соотношением напряжений, то есть

$$\frac{P_{a(3)}}{P_{a(\pi)}} \approx \frac{U_{a(3)}}{U_{a(\pi)}} , \qquad (6)$$

где P_{a(3)}, I_{a(3)}, U_{a(3)}, P_{a(п)}, I_{a(п)}, U_{a(п)} - мощности, токи и напряжения заявленного устройства и прототипа соответственно.

Создано экспериментальное устройство - преобразователь солнечной энергии с двумя фоточувствительными структурами с p-n переходом на основе арсенида галлия. В первой фоточувствительной структуре n_1^+ - сильнолегированный слой выполнен толщиной 2,3 мкм из GaAs, легированного Te с концентрацией $N_D = 5 \cdot 10^{19}$ см⁻³, n_1 -область выполнена также из GaAs, легированного Te с концентрацией $N_D = 5 \cdot 10^{19}$ см⁻³ и толщиной 0,4 мкм; суммарная толщина обедненных областей p-n перехода из GaAs W_0 составляет 0,65 мкм; p_1 -область выполнена из GaAs, легированного Cd с концентрацией $N_A \cong 5 \cdot 10^{16}$ см⁻³. Р-варизонный слой 7 выполнен структурой $Ga_x Al_{1-x} As$, причем параметр X изменяется от 0 до 1. Ширина запрещенной зоны AlAs $E_{g1} = 2,15$ эB, а ширина запрещенной зоны GaAs $E_{g2} = 1,43$ эB. Варизонный p-слой легирован Cd с концентрацией $N_A \cong 5 \cdot 10^{16}$ см⁻³, обладает толщиной 0,65 мкм. Р-слой широкозонного полупроводника выполнен из AlAs, легирован Cd с концентрацией $N_A \cong 3 \cdot 10^{19}$ см⁻³, шириной 0,5 мкм.

Во второй фоточувствительной структуре сильнолегированный р⁺₂ - слой выполнен из GaAs, легированного Cd с концентрацией $N_A = 5 \cdot 10^{19}$ см⁻³ и толщиной 2,3 мкм; слой p_2 также выполнен из GaAs, легированного Cd с концентрацией $N_A = 5 \cdot 10^{16}$ см и толщиной 0,4 мкм. Суммарная толщина обедненных областей W₀ p-n перехода из GaAs находится в пределах 0,65 мкм, а n₂-область выполнена из GaAs, легированного Те с концентрацией $N_{\rm D} = 10^{16}$ см⁻³ и толщиной 0,4 мкм. n₂-варизонный слой выполнен структурой Ga_xAl_{1-x}As с 0 ≤ X ≤ 1. Варизонный n₂-слой легирован Те с концентрацией донорной примеси $N_D \cong 5 \cdot 10^{16}$ см, он обладает толщиной 0,65 мкм; n₃-слой из широкозонного полупроводника выполнен на основе AlAs, легированного Te с концентрацией примеси $N_D \cong 10^{16}$ см и обладают толщиной 0,5 мкм. Сильнолегированный n₃⁺-слой выполнен из AlAs, легированного Те с концентрация $N_D \cong 5 \cdot 10^{19}$ см⁻³, шириной 0,5 мкм. Общее металлическое основание 1, являющееся омическим контактом, выполнено из алюминия толщиной 0,3 мм, причем оно со стороны n_1^+ -слоя легировано Te, а со стороны p_2^+ -слоя легировано Cd. Слой диэлектрика 2 сформирован из SiO₂ толщиной 3 мкм. Омический контакт 16 создан структурой Cd-Al-Ni общей толщиной 1,8 мкм, а омический контакт 18 выполнен структурой Te-Al-Ni общей толщиной 1,8 мкм.

Экспериментальный преобразователь солнечной энергии, выполненный структурой GaAs-Ga_xAl_{1-x}As-AlAs при интенсивности солнечного излучения с энергией $P_{Bx} = 65 \text{ MBT/cm}^2$ обладает следующими параметрами: $U_{am} = 2,6 \text{ B}$; $I_{amax} \cong 20 \text{ MA/cm}^3$; выходная мощность $P_{am} \cong 40-50 \text{ MBT/cm}^2$; $T_{don} \ge 150 \text{ °C}$. Для прототипа эти параметры составляют: $U_{am} = 0,78 \text{ B}$; $I_{am} = 12 \text{ MA/cm}^2$; $P_{am} \cong 6 \text{ MBT/cm}^2$; $T_{don} \le 100 \text{ B}$.

На базе предлагаемого устройства может быть создана экономичная солнечная батарея требуемых размеров и мощностей.

Технико-экономические преимущества заявляемого преобразователя солнечной энергии в сравнении с устройством-прототипом и другими аналогами:

1. Более чем в 5 раз возрастает выходная мощность;

2. Более чем в 3 раза возрастает фотоэдс;

3. Более чем в 1,5 раза возрастает предельная рабочая температура.

Промышленное освоение предлагаемого преобразователя солнечной энергии возможно на предприятиях электронной промышленности.

Источники информации:

- 1. Колтун М.М. Солнечные элементы. М.: Наука, 1987. 2. Патент США 4191593, МПК⁵ Н 01L 31/06, 1990.
- 3. Заявка Великобритании 2023927, МПК⁴ Н 01L 31/06, 1980.

Фиг. 2

Национальный центр интеллектуальной собственности. 220034, г. Минск, ул. Козлова, 20.