_____ V

ПРИБОРОСТРОЕНИЕ, МЕТРОЛОГИЯ И ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И СИСТЕМЫ

УДК 621.373.826

КИНЕТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОРАЗРЯДНОГО СО₂-ЛАЗЕРА С БЫСТРОЙ ПРОКАЧКОЙ

Докт. физ.-мат. наук, доц. НЕВДАХ В. В.

Белорусский национальный технический университет

Электроразрядные СО2-лазеры с быстрой прокачкой (БП) на протяжении последних более чем тридцати лет доминируют на мировом рынке мощных технологических лазеров. Несмотря на появление в последние годы мощных непрерывных твердотельных лазеров с диодной накачкой, СО2-лазеры имеют лучшее качество луча и все еще превосходят твердотельные по соотношению эффективность/стоимость. Достижения в области технологических СО2-лазеров базируются на существующем уже длительное время качественном понимании механизма образования инверсии населенностей на основных лазерных переходах 00°1-10°0 (область 10-11 мкм) и 00⁰1-02⁰0 (область 9-10 мкм) молекул СО₂ – инверсия населенностей образуется из-за различия в скоростях возбуждения и релаксации лазерных уровней (например, [1-3]). Также принято считать, что быстрое и эффективное охлаждение активной среды в СО2-лазерах с БП активной среды обеспечивает их существенно большую удельную выходную мощность по сравнению с отпаянными СО₂-лазерами [1–5]. Поэтому СО₂-лазеры с БП обычно называют конвективно-охлаждаемыми лазерами, а отпаянные СО2-лазеры – диффузионно-охлаждаемыми лазерами. Согласно преобладающей в литературе точке зрения, на роль процесса охлаждения в механизме генерации излучения СО2-лазерами, повышение температуры их активной среды ведет к увеличению теплового заселения нижнего лазерного уровня и к ускорению процесса релаксации верхнего лазерного уровня. Оба эти процесса уменьшают инверсию населенностей и тем самым ограничивают выходную мощность электроразрядных СО₂-лазеров. Считается, что существует некоторая критическая температура активной среды, при достижении которой инверсная населенность в ней исчезает. Именно с этими причинами связывается необходимость охлаждения активной среды СО2-лазеров. В то же время численные оценки величины такой критической температуры, сделанные разными авторами, сильно различаются [1-7], а в [8] сообщалось о реализации непрерывного СО2-лазера без водяного охлаждения. В литературе также отсутствует единая точка зрения и по вопросу количественного состава основных компонент СО2:N2:Не активных сред непрерывных СО2-лазеров для получения максимальной мощности генерации [1, 2, 4, 8, 9]. Следует отметить, что лучшее понимание кинетики электроразрядных СО2-лазеров необходимо не только для улучшения энергетических параметров и эффективности мощных технологических лазерных систем, но и при рассмотрении таких лазеров как квантовых тепловых машин [10].

Целью проводимых автором исследований являлась разработка кинетической модели непрерывного электроразрядного СО₂-лазера с БП, выводы которой согласуются с имеющимися экспериментальными данными по параметрам и характеристикам, полученным в СО₂-лазерах с БП различных конструкций.

Кинетическая модель СО₂-лазера с быстрой прокачкой. На рис. 1 показаны основной колебательный уровень $00^{0}0$ и все нижние колебательные уровни до верхнего лазерного уровня $00^{0}1$ (включительно) молекулы CO₂, а также основной и первый возбужденный колебательные уровни молекулы N₂, рассматриваемые в кинетической модели непрерывного электроразрядного CO₂-лазера с БП. Под верхним лазерным уровнем в модели понимается собственно уровень $00^{0}1$, а также связанные с ним быстрыми процессами внутримодовой и межмодовой квазирезонансной колебательно-колебательные уровни молекулы CO₂ [3].

Рис. 1. Схема нижних колебательных уровней молекул CO₂ и N₂, рассматриваемых в кинетической модели CO₂-лазера с быстрой прокачкой: → – лазерный переход 00⁰1–10⁰0; ——– процессы возбуждения ––– – то же релаксации

В модели также учитывается, что в передаче колебательной энергии от возбужденных молекул азота молекулам CO_2 участвуют молекулы азота, находящиеся не только на первом возбужденном колебательном уровне, но и на других вышележащих колебательных уровнях. Основными физическими процессами, протекающими в активной среде рассматриваемого CO_2 -лазера с БП, являются процессы возбуждения и релаксации лазерных уровней в резонаторе лазера, вынужденное испускание излучения и прокачка газа через резонатор. В модели считается, что:

1) возбуждение верхнего лазерного уровня молекул CO₂ осуществляется с основного коле-

Наука итехника, № 4, 2013 Science & Technique бательного уровня как электронным ударом со скоростью M_u^e , так и за счет передачи колебательной энергии от возбужденных молекул N₂ со скоростью M_u^N , тогда как возбуждение нижнего лазерного уровня осуществляется только электронным ударом со скоростью M_l^e ;

2) релаксация населенности N_u возбужденного верхнего лазерного уровня осуществляется по двум каналам – через нижний лазерный уровень 10⁰0 со скоростью 1/ τ_1 и через колебательные уровни деформационной моды со скоростью 1/ τ_2 (рис. 1);

3) населенность N_l нижнего лазерного уровня релаксирует также через колебательные уровни деформационной моды со скоростью $1/\tau_{1-2}$;

4) в режиме прокачки со скоростью $1/\tau_{\nu}$ молекулы активной среды находятся в резонаторе лазера в течение времени τ_{ν} .

В соответствии со сказанным выше $1/\tau_u = 1/\tau_1 + 1/\tau_2 + 1/\tau_v$ и $1/\tau_l = 1/\tau_{l2} + 1/\tau_v$, где τ_u и $\tau_l -$ времена жизни колебательных уровней $00^{0}1$ и $10^{0}0$ в режиме прокачки соответственно.

Если в резонаторе лазера генерируется излучение интенсивностью I на частоте v, то система кинетических уравнений, описывающая поведение населенности лазерных уровней, может быть записана в виде [11]:

$$\frac{dN_u}{dt} = M_u^e + M_u^n - \sigma f \quad J \quad \frac{I}{h\nu} \quad N_u - N_l \quad -\frac{N_u}{\tau_u};$$

$$\frac{dN_l}{dt} = M_l^e + \sigma f \quad J \quad \frac{I}{h\nu} \quad N_u - N_l \quad +\frac{N_u}{\tau_1} - \frac{N_l}{\tau_l},$$
(1)

где σ – сечение вынужденного лазерного перехода; f(J) – функция распределения по вращательным уровням (для простоты считается одинаковой для обоих лазерных уровней); J – вращательное квантовое число.

Решив систему уравнений (1) относительно величин N_u и N_l для стационарного случая и используя выражение для насыщенного коэффициента усиления *g* в виде

$$g = \sigma f \quad J \quad \frac{I}{h\nu} \quad N_u - N_l \quad , \tag{2}$$

а также связь между насыщенным и ненасыщенным коэффициентами усиления (КУ) g₀ в виде

$$g = \frac{g_0}{1 + I/I_s},\tag{3}$$

получаем соответственно выражения для ненасыщенного КУ

$$g_0 \quad J = \sigma f \quad J \quad \left[M_u^e + M_u^n \quad \tau_u \left(1 - \frac{\tau_l}{\tau_1} \right) - M_l^e \tau_l \right]$$
(4)

и интенсивности насыщения Is

$$I_{s} = \frac{hv}{\sigma f \ J \ \tau_{u} \ 1 + \tau_{l}/\tau_{2}}.$$
 (5)

Зная ненасыщенный КУ и интенсивность насыщения и используя формулу Ригрода [12], можно записать выражение для оценки мощности генерации (без учета свойств резонатора) непрерывного лазера P_{out} в виде

$$P_{out} \sim g_0 \ J \ I_s = \frac{h\nu \left[\ M_u^e + M_u^n \ 1 - \tau_l / \tau_1 \ - M_l^e \ \tau_l / \tau_u \right]}{1 + \tau_l / \tau_2}.$$
 (6)

Из (6) видно, что мощность генерации СО2-лазера с БП определяется скоростями возбуждения, временами жизни и скоростями релаксации лазерных уровней. Особенности кинетики СО2-лазера с прокачкой активной среды проявляются не только во временах жизни лазерных уровней, но и в скоростях возбуждения этих уровней. При прокачке активной среды со скоростью 1/т_v любая молекула CO₂, находящаяся в резонаторе, за время $\Delta \tau = 1$ с может $\xi_{Cv} =$ $= \Delta \tau / \Delta t_{Cv}$ раз принять участие в акте испускания излучения, где $\Delta t_{Cv} \approx \tau_l = \tau_{1-2}$ – время жизни нижнего лазерного уровня. Кроме того, за время $\Delta \tau = 1$ с в резонаторе произойдет $\xi_{\nu} = \Delta \tau / \tau_{\nu}$ раз смена этих молекул, в результате которой в резонатор поступают новые молекулы СО₂, находящиеся в основном состоянии при температуре газа на входе в разряд Т₀. Поэтому скорости возбуждения лазерных уровней молекул СО2 электронным ударом в условиях прокачки возрастают и могут быть записаны в виде:

И

$$M_{l}^{e} = \left[\xi_{Cv} N_{C} Q_{VC}^{-1} \ T_{i} + \xi_{v} N_{C} Q_{VC}^{-1} \ T_{0} \ \right] n_{e} k_{l}^{e}.$$

 $M_{u}^{e} = \begin{bmatrix} \xi_{Cv} N_{C} Q_{VC}^{-1} & T_{i} + \xi_{v} N_{C} Q_{VC}^{-1} & T_{0} \end{bmatrix} n_{e} k_{u}^{e}$

Здесь $N_{\rm C}$ – плотность молекул CO₂, $Q_{vC}(T_i) =$ = $1 - X_1^{-1} 1 - X_2^{-2} 1 - X_3^{-1} -$ колебательная статистическая сумма, $X_i = \exp(-hv_i/kT_i)$; $hv_i -$ колебательный квант; $T_i -$ колебательная температура *i*-й моды молекул CO₂ (*i* = 1, 2, 3); n_e – плотность электронов разряда; k_u^e , k_i^e – константы скорости возбуждения верхнего и нижнего лазерных уровней соответственно электронным ударом.

Молекулы N₂, в отличие от молекул CO₂, участвуют только в двух процессах – в возбуждении колебательной моды v₄ и в передаче колебательной энергии из этой моды в моду v₃ молекулы CO₂. Каждая молекула N₂ может принять участие в этих процессах за время $\Delta \tau =$ = 1 с $\xi_N = \Delta \tau / \Delta t_N$ раз, где $\Delta t_N \approx \tau_{4,3}$ – время колебательно-колебательного обмена между молекулами N₂ и CO₂. Скорость накачки верхнего лазерного уровня молекулами N₂ в условиях прокачки описывается выражением

$$M_{u}^{N} = \begin{bmatrix} \xi_{N} N_{N} Q_{VN}^{-1} & T_{4} & + \xi_{v} N_{N} Q_{VN}^{-1} & T_{0} \end{bmatrix} n_{e} k_{N}^{e}.$$

Здесь N_N – плотность; $Q_{VN} = 1 - X_4^{-1}$; $X_4 = \exp(-hv_4/kT_4)$; hv_4 – колебательный квант; T_4 – колебательная температура молекул N₂; k_N^e – константа скорости возбуждения колебательных уровней молекул N₂ электронным ударом.

Подстановка выражений для скоростей возбуждения лазерных уровней в решения системы кинетических уравнений (1) позволяет получить новые формулы для КУ g_0 и интенсивности насыщения I_s в виде:

$$g_{0} J = \sigma f J n_{e} \times \left[\xi_{Cv} Q_{VC}^{-1} T_{i} + \xi_{v} Q_{VC}^{-1} T_{0} \right] N_{C} \times \\ \times \left[\times \left[\frac{k_{u}^{e} \tau_{u} \tau_{v}}{\tau_{v} + \tau_{u}} \left(1 - \frac{\tau_{l} \tau_{v}}{\tau_{1} + \tau_{v}} \right) - \frac{k_{l}^{e} \tau_{l} \tau_{v}}{\tau_{l} + \tau_{v}} \right] + \\ + \left[\xi_{N} Q_{VN}^{-1} T_{4} + \xi_{v} Q_{VN}^{-1} T_{0} \right] N_{N} \frac{k_{v}^{e} \tau_{u} \tau_{v}}{\tau_{v} + \tau_{u}} \times \\ \times \left\{ 1 - \frac{\tau_{l} \tau_{v}}{\tau_{1} + \tau_{v}} \right\};$$

$$I_{s} = \frac{hv \tau_{u} + \tau_{v} \tau_{l} + \tau_{v} \tau_{l} + \tau_{v} \tau_{2}}{\sigma f J \tau_{u} \tau_{v} \left[\tau_{l} \tau_{v} + \tau_{2} \tau_{l} + \tau_{v} \right]}.$$
(8)

Наука итехника, № 4, 2013 Science & Technique В этом случае формула для оценки выходной мощности CO₂-лазера с прокачкой актив-

ной среды принимает вид

$$P_{out} \sim h \nu n_e \frac{\xi_{C\nu} N_C Q_{\nu C}^{-1} T_i \left[k_u^e \ 1 - \tau_l / \tau_1 \ - k_l^e \ \tau_l / \tau_u \right] + \xi_N N_N Q_{\nu N}^{-1} T_4 \ k_N^e \ 1 - \tau_l / \tau_1}{1 + \tau_l / \tau_2} + h \nu n_e \xi_\nu \frac{N_C Q_{\nu C}^{-1} T_0 \left[k_u^e \ 1 - \tau_l / \tau_1 \ - k_l^e \ \tau_l / \tau_1 \right] + N_N Q_{\nu N}^{-1} T_0 \ k_N^e \ 1 - \tau_l / \tau_1}{1 + \tau_l / \tau_2}.$$
(9)

В формуле (9) первое слагаемое описывает вклад в выходную мощность молекул, работающих в резонаторе, как и в отпаянном режиме, по циклу: возбуждение \rightarrow испускание лазерного излучения \rightarrow релаксация в основное состояние. Второе слагаемое описывает вклад в выходную мощность новых молекул, поступающих в резонатор в результате прокачки газа. Эти молекулы работают по другому циклу: попадание в резонатор \rightarrow возбуждение \rightarrow испускание лазерного излучения \rightarrow выход из резонатора. Формула (9) объясняет механизм увеличения выходной мощности СО₂-лазера при прокачке активной среды с любой, даже очень медленной скоростью.

Характеристики СО₂-лазера в режиме быстрой прокачки. В условиях быстрой прокачки скорость прокачки $(1/\tau_v = 1/\tau_{ff})$ намного превышает скорости релаксации лазерных уровней, т. е. $1/\tau_{ff} >> 1/\tau_1$, $1/\tau_2$, $1/\tau_{l2}$ и $\tau_2/\tau_{ff} >> 1$, $\xi_v >> \xi_N$ и ξ_{Cv} . При известном составе смеси СО₂:N₂ = 1:*Y* можно считать, что $N_N = YN_C$. При таких условиях выражения (7) и (8) упрощаются и принимают соответственно вид:

$$g_0(J) = \sigma f(J) n_e N_C \times \\ \times \Big[Q_{VC}^{-1}(T_0) \ k_u^e - k_l^e \ + Q_{VN}^{-1}(T_0) Y k_N^e \Big]; \quad (10)$$

$$I_s \approx \frac{h\nu}{\sigma f(J)\tau_{ff}}.$$
 (11)

Из формулы (10) следует, что величина КУ CO_2 -лазера с БП не зависит от скорости прокачки, а определяется только условиями разряда – плотностью электронов и константами скоростей возбуждения колебательных уровней молекул CO_2 и N_2 электронным ударом. Влияние температуры активной среды *T* непосредственно на величину КУ оказывается только невелико, а также косвенно через условия устойчивости разряда. Из формулы (11) видно, что величина ин-

через зависимости величин σ и f(J) от T и оно

Из формулы (11) видно, что величина интенсивности насыщения на любой линии генерации CO₂-лазера с БП, наоборот, определяется в основном скоростью прокачки $1/\tau_{ff}$. Влияние температуры активной среды на величину интенсивности насыщения оказывается, как и для КУ, через величины σ и f(J), но это влияние обратное, т. е. если рост температуры активной среды приводит к уменьшению КУ, то интенсивность насыщения при этом, наоборот, возрастает.

В режиме БП выражение (9) для мощности генерации может быть представлено в более простом виде

$$P_{out} \sim \frac{h \nu n_e N_C}{\tau_{ff}} \times \left[Q_{VC}^{-1}(T_0) \ k_u^e - k_l^e + Q_{VN}^{-1}(T_0) Y k_N^e \right].$$
(12)

Из формулы (12) следует ряд важных для физики CO₂-лазера с БП выводов. Видно, что выходная мощность CO₂-лазера с БП:

• пропорциональна скорости прокачки активной среды через резонатор $1/\tau_{ff}$ или количеству возбужденных молекул CO₂, прошедших через резонатор лазера в единицу времени, и определяется в основном интенсивностью насыщения, а не величиной инверсии, или величиной KУ;

• растет при увеличении констант скоростей возбуждения верхнего лазерного уровня и колебательных уровней молекул N_2 и уменьшается при увеличении константы скорости возбуждения нижнего лазерного уровня электронным ударом;

 будет расти при увеличении плотности электронов разряда, или величины энерговклада в разряд, пока энергии электронов подходят

Наука итехника, № 4, 2013 Science & Technique для возбуждения колебательных уровней молекул CO₂ и N₂;

• в явном виде зависит от температуры газа только на входе в разряд и эта зависимость, проявляющаяся через колебательные статистические суммы молекул CO₂ и N₂, не является определяющей в диапазоне 300–1000 К. Уменьшение выходной мощности лазера при повышении температуры газа на входе в разряд, обусловленное уменьшением колебательных статистических сумм молекул CO₂ и N₂, может быть скомпенсировано увеличением скорости прокачки газа или увеличением плотности электронов разряда;

• зависит от температуры активной среды только через условие стабильности разряда – такой лазер будет работать до достижения температуры тепловой неустойчивости разряда;

• пропорциональна количеству молекул азота в газовой смеси пока скорость их возбуждения и скорость передачи колебательной энергии молекулам CO₂ больше скорости прокачки активной среды.

Следует отметить, что все эти выводы, сделанные на основе представленной кинетической модели СО₂-лазера с БП, полностью согласуются с имеющимися литературными данными по параметрам и характеристикам, полученным в СО₂-лазерах различных конструкций как с поперечной, так и с продольной БП.

выводы

1. Представлена кинетическая модель СО₂-лазера с быстрой прокачкой, в которой учтены особенности режима БП. Получены выражения, связывающие ненасыщенный коэффициент усиления, интенсивность насыщения и выходную мощность СО₂-лазера с быстрой прокачкой со скоростями возбуждения и временами жизни лазерных уровней, исследовано влияние температуры активной среды на работу СО₂-лазера с быстрой прокачкой.

2. Истинная роль процесса быстрой прокачки газа через резонатор CO_2 -лазера в механизме увеличения его выходной мощности, по сравнению с соответствующим отпаянным CO_2 -лазером, заключается в обеспечении бо́льшей скорости накачки верхнего лазерного уровня 00^01 , что позволяет участвовать в процессе испускания излучения в единицу времени бо́льшему количеству молекул CO₂, а не в охлаждении активной среды. В терминах параметров, характеризующих активную среду, более высокая выходная мощность CO₂-лазера с БП обеспечивается бо́льшей интенсивностью насыщения, величина которой в режиме быстрой прокачки определяется меньшим временем т_{ff} нахождения молекул CO₂ в резонаторе.

3. Формула (12) показывает определяющую роль молекул азота как резервуара энергии для селективного возбуждения верхнего лазерного уровня. При достаточной величине колебательной энергии молекул азота, обеспечиваемой константой скорости возбуждения k_n^e , CO₂-лазер может генерировать излучение даже в таких условиях разряда, при которых $k_u^e - k_l^e < 0$, т. е. когда константа скорости возбуждения верхнего лазерного уровня электронным ударом меньше соответствующей константы скорости возбуждения.

Формула (12) также объясняет, почему в оптимальных составах активных сред СО2-лазеров с быстрой прокачкой отношение концентраций молекул $N_2:CO_2 = Y$ значительно превышает аналогичное отношение для отпаянных лазеров, и почему диапазон изменения оптимальных отношений N₂:CO₂ для различных по конструкции СО2-лазеров с быстрой прокачкой может меняться больше чем на порядок величины. При поддержании устойчивого разряда одна и та же выходная мощность лазера может быть получена в различных условиях разряда при разных комбинациях скорости прокачки и состава смеси и, следовательно, при различных, в том числе и при высоких, температурах активных сред. При реализации стабильного разряда в активных средах, содержащих значительное количество молекул азота (при больших значениях У), СО2-лазер с быстрой прокачкой будет работать и при высоких температурах активной среды. Это означает, что активная среда СО2-лазера с быстрой прокачкой может содержать меньшее количество дорогостоящего гелия, выполняющего роль переносчика избытка колебательной энергии от молекул СО2.

ЛИТЕРАТУРА

1. **Виттеман, В.** СО₂-лазер / В. Виттеман. – М.: Мир, 1990. – 360 с.

2. Hill, A. E. High-power electric CO_2 lasers / A. E. Hill // Gas lasers. Ed. by M. Endo, R. F. Walter. CRC Press. – N.Y., 2007. – P. 287–340.

3. Гордиец, Б. Ф. Кинетические процессы в газах и молекулярные лазеры / Б. Ф. Гордиец, А. И. Осипов, Л. А. Шелепин. – М.: Наука, 1980. – 512 с.

4. Nath, A. K. Scaling of laser power with N_2 partial pressure in a convective-cooled CW CO_2 laser / A. K. Nath, M. Kumar // IEEE J. Quant. Electron. – 1993. – Vol. 29, N_2 4. – P. 1199–1204.

5. Golubev, V. S. Scaling laws for designing high-power CW CO_2 lasers / V. S. Golubev, A. K. Nath // Proc. SPIE. – 2000. – Vol. 4165. – P. 42–55.

6. **High-power two-dimentional** waveguide CO₂ laser arrays / K. M. Abramski [et al.] // IEEE J. Quantum Electron. – 1996. – Vol. 32, № 2. – P. 340–348.

7. **Невдах, В. В.** О влиянии температуры на создание инверсии в активных средах электроразрядных CO₂-лазеров / В. В. Невдах // Квант. электрон. – 2001. – Т. 31, № 6. – С. 525–528. 8. **Tsui, K. H.** Influence of the unstable glow discharge plasma state on the CW CO₂ laser output / K. H. Tsui, R. A. D. Zanon, C. A. Massone // IEEE J. Quantum Electron. – 1993. – Vol. 29, \mathbb{N} 7. – P. 2138–2140.

9. Невдах, В. В. Оптимизация соотношения CO₂:N₂:Не в активных средах непрерывных электроразрядных CO₂-лазеров / В. В. Невдах, Г. Монире // Журн. прикл. спектр. – 2004. – Т. 71, № 4. – С. 490–496.

10. **Hill, A. E.** Practical implementation of a CO₂-lasercoupled quantum heat engine / A. E. Hill, Y. V. Rostovtsev, M. O. Scully // Phys. Rev. A 72, 043802. – 2005.

11. **Невдах, В. В.** Влияние температуры активной среды на работу СО₂-лазера с быстрой прокачкой / В. В. Невдах, К. И. Аршинов, О. Л. Гайко // Оптика и спектроскопия. – 2009. – Т. 107, № 3. – С. 398–402.

12. **Rigrod, W. W.** Homogeneously broadened cw lasers with uniform distributed loss / W. W. Rigrod // IEEE J. Quant. Electron. -1978. - Vol. 14, No 5. - P. 377-381.

Поступила 19.02.2013

УДК 621.937.1

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ДВУХМЕРНОГО ПЕРИОДИЧЕСКОГО ЦИРКУЛЯЦИОННОГО ДВИЖЕНИЯ ЗАГОТОВКИ ПРИ ОБРАБОТКЕ НА МОДЕРНИЗИРОВАННОЙ РАСПИЛОВОЧНОЙ СЕКЦИИ

Докт. техн. наук, проф. КИСЕЛЕВ М. Г., канд. техн. наук, доц. ДРОЗДОВ А. В., асп. ЯМНАЯ Д. А.

Белорусский национальный технический университет

Операция механического распиливания монокристаллов алмаза на части (полуфабрикаты) является важным этапом технологического процесса их переработки в бриллианты и другие изделия технического назначения (инструменты, подложки) [1]. Учитывая высокую стоимость монокристаллов алмаза, первостепенным требованием при их обработке является обеспечение минимальной величины (процента) безвозвратных потерь исходного сырья. Из числа известных способов разделения монокристаллов алмаза (лазерный, электронно-лучевой и др.) в наибольшей степени это требование обеспечивается при их механическом распиливании, благодаря чему сегодня этот способ повсеместно используется на алмазообрабатывающих предприятиях.

Наука итехника, № 4, 2013 Science & Technique Технологическая схема распиливания монокристаллов алмаза (рис. 1) проста и аналогична схеме распиливания заготовок алмазным отрезным кругом с его гравитационной подачей [2] с той только разницей, что движение подачи $S_{\rm B}$ сообщается не инструменту 1 (распиловочному диску), а обрабатываемой заготовке 2, закрепленной на конце качающегося рычага 3.

