ОБОСНОВАНИЕ СХЕМЫ КОРРЕКТИРУЮЩЕГО КОНТУРА АВТОМАТИЧЕСКОЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ РАСХОДА ОБЩЕГО ВОЗДУХА КОТЛА

Канд. техн. наук, доц. НАЗАРОВ В. И., магистр.техн. наук БУРОВ А. Л.

Белорусский национальный технический университет

В настоящее время сжигание топлива с предельно низкими избытками воздуха является малозатратной, энергосберегающей технологией. В большинстве своем газомазутныекотлоагрегаты оснащаются простейшими одноконтурными автоматическими системами регулирования (АСР) «топливо – воздух». Реже это касается крупныхкотлоагрегатов, где используется двухконтурная каскадная АСР с корректирующим сигналом по концентрации кислорода в режимном сечении котла. Недостаток этого корректирующего сигнала был рассмотрен в [1], где определено, что наиболее приемлемым с точки зрения оптимизации процесса сжигания топлива является сигнал по химическому недожогу, приведенный к оксиду углерода СО.

Исследуем АСР расхода общего воздуха с различными корректирующими сигналами для оценки влияния их на динамические характеристики регулирования соотношения «топливо – воздух». Типовые структуры систем регулирования с различными корректирующими сигналамиприведенына рис.1, их математические модели –на рис.2. Путем математического моделирования были исследованы динамические характеристики этих систем при обработке возмущения по нагрузке котла (расходу топлива) и разряжения (при различных уровнях присосов воздуха в котел).

Puc. 1. Структурная схема автоматической системы регулирования расхода общего воздуха: а – с коррекцией по O₂; б – то же по CO; B_T – сигнал по расходу топлива; O₂(CO) – то же концентрации кислорода (оксида углерода) в уходящих газах;
O₂³⁴ (CO³⁴) – то же задания концентрации кислорода (оксида углерода) в уходящих газах;
Q₈ – то же по расходу общего воздуха; PK – регулятор корректирующий; PC – то же стабилизирующий; БУ – блок управления; ПБР – пускатель бесконтактный реверсивный; МЭО – механизм электрический однооборотный; НАДВ – регулирующий орган В каждой АСР внутренний контур образован: стабилизирующим регулятором $W_{PC}(P)$; объектом регулирования $W_{HQ}(P)$, представляющим собой участок воздушного тракта от напора дутьевого вентилятора до места измерения расхода воздуха Q. Внешний контур образован: контуром стабилизации, корректирующим регулятором $W_{PK}(P)$; объектом регулирования $W_{QO_2}(P)$ по концентрации Q_2 ; аналогично $W_{QCO}(P)$ по концентрации СО. Кроме того, на рис.2 указаны: $W_{BO2}(P)$ – передаточная функция по каналу расход топлива $B_{\rm T}$ – концентрация O_2 ; аналогично $W_{BCO}(P)$ по концентрации СО; $W_{QS}(P)$ – передаточная функция по каналу расход топлива $B_{\rm T}$ – концентрация O_2 ; аналогично $W_{BCO}(P)$ по концентрации СО; $W_{QS}(P)$ – передаточная функция по каналу расход воздуха Q – разрежение S за топкой котла; $W_{SO_2}(P)$ – то же по каналу разрежения S – концентрация $CO; W_{O_2}(P)$ – то же преобразователя концентрации $O_2; W_{CO}(P)$ – то же преобразователя по концентрации CO.

Рис. 2. Математическая модель автоматической системы регулирования расхода общего воздуха:а – с коррекцией по О₂; б – то же по СО

Все передаточные функции моделируемых участков задавали в виде апериодического звена первого порядка с запаздыванием, то есть

$$W(P) = \frac{ke^{-\tau p}}{T_p + 1}.$$
 (1)

Коэффициенты моделей участков представлены в табл. 1 [2].

Таблица 1

Числовые значения коэффициентов передаточных функций для математического моделирования автоматической системы регулирования расхода общего воздуха

Передаточная функция модели	Параметры модели		
	K	τ, c	<i>T</i> , c

$W_{\mathrm HQ}$	2,5	1,5	10
W_{BO_2}	1,8	4,0	15

Окончание табл. 1

Передаточная	Параметры модели			
функция модели	K	τ, c	<i>T</i> , c	
W_{QO_2}	0,5	4,0	15	
W_{QS}	1,2	3,0	12	
W _{SO2}	1,0/1,3	0,5	7	
W_{O2}	0,8	2,0	20	
W _{BCO}	3,2	-	—	
W_{QCO}	2,1	4,0	15	
W _{SCO}	0,40/0,38	1,5	10	
W _{CO}	0,9	2,0	20	

Исследования переходных процессов осуществляли при стандартных и повышенных присосах воздуха в котле. Считалось, что измерения концентрации O₂ и CO осуществляются в режимном сечении. Параметры настройки регуляторов обеих АСР были рассчитаны по [3].

Результаты математического моделирования приведены на рис. 3–6. Как видно, на характер переходных процессов АСР РОВ с коррекцией по O_2 существенное влияние оказывают изменения присосов воздуха перед режимным сечением котла. Это объясняется тем, что изменение присоса воздуха на 1,00% изменяет концентрацию кислорода в газах на 0,25% об., причем величина присосов также зависит и от изменения разрежения за топкой котла. Для АСР РОВ с коррекцией по СО изменения присосов воздуха незначительно сказываются на изменении концентрации оксида углерода. Отсюда для этой АСРдинамические процессыбудут более оптимальными. Причем возмущение разрежением *S* на выходе из топки котла АСР РОВ с коррекцией по O_2 приводит к существенному пережогу топлива (рис.3а, 4а).

Рис. 3. Переходные процессы в АСР РОВ при ступенчатом увеличении расхода топлива *B*_т (присосы в котел нормативные): а – с коррекцией по O₂; б – то же по СО

Рис. 4. Переходные процессы в АСР РОВ при ступенчатом увеличении разрежения *S* на выходе из топки (присосы в котел нормативные): а – с коррекцией по O₂; б – то же по СО

Рис. 6. Переходные процессы в АСР РОВ при ступенчатом увеличении разрежения *S* на выходе из топки (присосы в котел на 30 % больше нормативных): a - c коррекцией по O_2 ; 6 - то же по СО

вывод

Исследования динамических характеристик каскадной ACP POB с различными корректирующими сигналами показали, что сигнал по оксиду углерода дает более приемлемые результаты по сравнению с сигналом по кислороду.

ЛИТЕРАТУРА

1. На заров, В.И. Обоснование выбора параметра контроля качества процесса горения газомазутного топлива / В.И. Назаров // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 1999. – № 5. – С. 64–70.

2. И в а н о в, В. А. Экспериментальные динамические характеристики котла ТГМП-114 при комбинированной программе регулирования / В. А. Иванов, В. Г. Штепа // Энерго-машиностроение.– 1976. – № 7. – С. 9–13. 3. К у л а к о в, Г. Т. Инженерные экспресс-методы расчета промышленных систем ре-

гулирования / Г.Т. Кулаков. – Минск: Вышэйш. шк., 1984. – 192 с.

Представлена кафедрой ТЭС

Поступила 09.03.2012