гидроэнергетика

УДК 621.694.3

К РАСЧЕТУ ВЕЛИЧИНЫ ВАКУУМА В СТРУЙНЫХ АППАРАТАХ ВАКУУМНЫХ УСТАНОВОК

Кандидаты техн. наук, доценты КРАВЦОВ М. В., КРАВЦОВ А. М.

Белорусский государственный аграрный технический университет

Универсальные вакуумные установки, в которых используются лопастной насос и струйный аппарат для создания вакуума, находят применение в различных отраслях промышленности. Это установки для обеспечения самовсасывания и увеличения высоты всасывания лопастных насосов, циркуляционные самовсасывающие установки для вакуумного водоотлива и водопонижения, вакуумные дегазаторы станций водоподготовки и т. д. Методы и технологии применения данных установок хорошо известны [1, 2], однако методики расчетов их отдельных элементов (в частности, струйных аппаратов) нуждаются в развитии и научном обосновании на основе экспериментальных исследований.

Обращение к использованию результатов экспериментальных исследований обусловливается тем, что до сих пор отсутствует аналитическая теория, позволяющая дать основы для точных расчетов струйных аппаратов. Для различных процессов, происходящих при их работе, до сих пор не найдены общие закономерности, хотя есть общие уравнения гидродинамики, в которых обозначены все действующие силы. Для таких сложных процессов, где действуют во взаимной связи многие силы, а расчетные параметры зависят от множества взаимосвязанных факторов, сформулировать начальные и граничные условия для решения общих уравнений гидродинамики пока невозможно. Поэтому в арсенале средств исследований остается испытанный метод экспериментальных гидравлических исследований, при котором выявляются все факторы, влияющие на искомый расчетный параметр струйного аппарата, определяется ряд независимых переменных, влияющих на ход процесса, исследуется опытным путем влияние величины каждой из них для различных условий при постоянстве остальных.

В статье рассматриваются струйные аппараты для создания вакуума, в которых в качестве активной среды используется высокоскоростной поток воды (рабочей жидкости). При проектировании таких гидроструйных аппаратов основными расчетными параметрами являются расход рабочей жидкости Q_p и величина создаваемого вакуума $h_{\rm B}$. Исследования по поиску расчетной зависимости для определения расхода рабочей жидкости Q_p были представлены в [3]. Цель настоящих исследований – установить зависимость создаваемого в гидроструйном аппарате вакуума $h_{\rm B}$ от ряда конструктивных и гидродинамических параметров.

Для достижения поставленной цели были проведены экспериментальные исследования на опытной установке, представленной на рис. 1а. В процессе испытаний применяли бездиффузорный гидроструйный аппарат с удлиненной горловиной и соплом в виде диафрагмы с круглым отверстием и прямоугольными кромками (рис. 1б). Обоснование конструкции принятого гидроструйного аппарата представлено в [3].

Рис. 1. Экспериментальная установка: а – схема установки; б – то же гидроструйного аппарата: 1 – питательный бак; 2 – центробежный насос; 3 – манометр; 4 – шаровый кран;
5 – подающий трубопровод; 6 – счетчик воды; 7 – вакуумметр; 8 – гидроструйный аппарат;
9 – приемный бак; 10 – сливной трубопровод; 11 – диафрагма; 12 – вакуумная камера;
13 – камера смешения (горловина); H_г – геометрическая высота подъема; h₃ – величина «залива» насосной установки; Z – противонапор; p_н/pg, p_p/pg, p_в/pg – удельное давление в сечениях на выходе из центробежного насоса, на входе в гидроструйный аппарат и в его приемной камере соответственно; Q_p – расход рабочей жидкости;
d_п, d_c, d_к, d_г – диаметр подводящего трубопровода, сопла, вакуумной камеры и горловины соответственно; L_г – длина горловины

На рис. 1 показаны характерные сечения для составления уравнений баланса удельных энергий (уравнений Бернулли) и уравнений баланса расходов (уравнений неразрывности потоков): 0–0 – сечение на выходе потока из насоса; 1–1 – на входе в гидроструйный аппарат; 2–2 – на выходе из сопла диафрагмы; 3–3 – на выходе из камеры смешения гидроструйного аппарата.

На эффективность работы гидроструйного аппарата влияют характеристики насосов и подающего трубопровода (рис. 1а). Аналитические характеристики лопастного насоса и подающего трубопровода имеют следующий вид:

$$\frac{p_{\rm H}}{\rho g} = a_0 - a_1 Q_{\rm p} - a_2 Q_{\rm p}^2; \tag{1}$$

$$\frac{p_{\rm p}}{\rho g} = a_0 - b_1 Q_{\rm p} - b_2 Q_{\rm p}^2, \tag{2}$$

где $p_{\rm H}/(\rho g)$ – удельное давление в сечении 0–0 на выходе из насоса; $p_{\rm p}/(\rho g)$ – удельное давление в сечении 1–1 на входе в гидроструйный аппарат; $Q_{\rm p}$ – расход рабочей жидкости; a_0 , a_1 , a_2 , b_1 , b_2 – постоянные коэффициенты (a_0 – максимальный статический напор при $Q_{\rm p} = 0$).

Также можно записать

$$\frac{p_{\rm p}}{\rho g} = \frac{p_{\rm H}}{\rho g} - h_{f \ 0-1},\tag{3}$$

где $h_{f \ 0-1}$ – потери напора в подающем трубопроводе между сечениями 0–0 и 1–1 (рис. 1а).

Характеристики лопастных насосов задаются заводом-изготовителем, характеристика подающего трубопровода зависит от его геометрических и гидравлических параметров, а также вида и количества местных сопротивлений. Все показатели определяются с помощью известных гидравлических формул для расчетов потерь напора по длине и местных потерь напора.

При проведении экспериментальных исследований гидроструйных аппаратов изменяли следующие основные параметры:

диаметр отверстия сопла d_c, который составлял 0,004; 0,006; 0,008;
 0,01 и 0,012 м;

• длину горловины $L_{\rm r}$, которая изменялась от 0,07 до 0,85 м;

• величину противонапора Z: 0,4; 0,8; 1,2 и 1,6 м.

Опытная насосная установка, состоящая из двух последовательно соединенных центробежных насосов 2 (рис. 1а), обеспечивала статический напор до 65 м. Диаметры подающего трубопровода d_{π} на входе в гидроструйный аппарат составляли 0,0167 и 0,0360 м; диаметр вакуумной камеры $d_{\kappa} - 0,05$ м.

Параметры и характеристики экспериментальной насосной установки (НУ) с различной комбинацией насосов и трубопроводов представлены в табл. 1.

Таблица 1

№ HY	Количество насосов	a_0, M	a_1	<i>a</i> ₂	b_1	b_2	$d_{ m r},$ MM	$d_{\mathrm{n}},$ MM	КЭ _с ⁰ , м	$Q_{ m pc}^{ m max}$, jj/c	Материал горловины	
1	2	37,1	4600	0	4630	17000000	15,25	16,7	22,4	1,30	Орг- стекло	
2	2	65,0	34100	-3910000	34400	-3010000	21,2	36,0	25,3	2,18	Сталь	
3	2	65,0	34100	-3910000	39400	24580000	15,25	36,0	25,3	0,996	Сталь	
4	2	65,0	34100	-3910000	39700	1900000	21,2	36,0	25,30	1,06	Сталь	
5	2	65,0	34100	-3910000	40200	23400000	27,3	36,0	25,3	1,00	Сталь	
6	1	43,5	29908	0	27150	13800000	21,2	36,0	16,3	1,02	Сталь	
7	1	43,5	29908	0	43030	19900000	15,25	36,0	16,3	0,740	Орг- стекло	
8	1	43,5	29908	0	36000	22500000	21,2	36,0	16,3	0,792	Сталь	
9	1	43,5	29908	0	43745	14250000	27,3	36,0	16,3	0,778	Сталь	
тов	Примечание. Горловины из органического стекла составляли из отдельных элементов длиной 0,07 м.											

В ходе экспериментальных исследований определяли зависимость величины создаваемого вакуума $h_{\rm B}$ от различных параметров, в том числе изменяемых диаметра отверстия сопла $d_{\rm c}$ и величины противонапора Z. Для продуктивного анализа и систематизации опытных данных, а также компактного представления результатов исследований вначале рассматривали случай, когда Z = 0, а затем выявляли зависимости расчетных параметров при увеличении Z. Также при анализе влияния диаметра отверстия сопла $d_{\rm c}$ принимали его максимальное значение, когда $d_{\rm c} = d_{\rm r}$, и значение $d_{\rm c} \rightarrow 0$. Таким образом, в принятых условных обозначениях нижний индекс «0» означает, что величина определена при Z = 0, верхний индекс «0» означает, что величина определена при $d_{\rm c} \rightarrow 0$, верхний индекс «max» – величина найдена при $d_{\rm c} = d_{\rm r}$.

В результате обработки результатов получено следующее уравнение:

$$h_{\rm B0} = {\rm K} \Theta_{\rm c0} \left(A \frac{d_{\rm c}}{d_{\rm \kappa}} - B \right), \tag{4}$$

где КЭ_с – удельная кинетическая энергия в сопле (скоростной напор).

$$K\Theta_{c0} = \frac{K\Theta_{c0}^{0}}{1 + K\Theta_{c0}^{0}/K\Theta_{c0}^{max}};$$

$$A = -47, 4\left(\frac{d_{r}}{d_{\kappa}}\right)^{2} + 97, 8\frac{d_{c}}{d_{\kappa}} - 0,373\left(\frac{d_{n}}{d_{\kappa}}\right)^{2};$$

$$B = 0,170\sqrt{\frac{d_{\kappa}}{d_{n}}},$$

83

Сопоставление расчетных по (4) и опытных данных представлено на рис. 2.

Рис. 2. Зависимость $h_{B0} = f(d_c)$: линии – расчет по (4); точки – опытные данные

На основании анализа графиков зависимости $h_{B0} = f(d_c)$ на рис. 2 можно сделать следующие выводы. Во-первых, кривые имеют максимумы, что свидетельствует о возможности оптимизации расчетов гидроструйных аппаратов вакуумных установок. Во-вторых, при стремлении диаметра сопла d_c к большим значениям величина вакуума h_{B0} стремится к нулю, а при стремлении d_c к малым значениям h_{B0} достигает нуля, а затем принимает отрицательное значение, т. е. возникает манометрическое давление, достигающее максимума при бесконечно малых значениях d_c .

Для применения в полном объеме уравнения (4) следует определить метод вычисления величин $K \Im_{c0}^{0}$ и $K \Im_{c0}^{max}$. Определим величину $K \Im_{c0}^{0}$ с помощью уравнения Бернулли, составленного для сечений 1–1 и 2–2 (рис. 1а). Пренебрегая скоростным напором в подающем трубопроводе, получим

$$\frac{p_{\rm p}}{\rho g} = {\rm K} \Im_{\rm c0} - h_{\rm B0} + (h_{f1-2})_0, \qquad (5)$$

где h_{f1-2} – потери напора в сопле между сечениями 1–1 и 2–2 (рис. 1а).

К формуле (5) добавим уравнение, полученное при обработке опытных данных:

$$(h_{f1-2})_0 = 1.15 \left(\frac{p_p}{\rho g} + h_{B0}\right)^{0.812}.$$
 (6)

Для случая $d_c \approx 0$ уравнения (4) и (5) преобразуются к следующему виду:

$$h_{\rm B0} = -B {\rm K} \Theta_{\rm c0}; \tag{7}$$

$$a_0 = K \Theta_{c0} + B K \Theta_{c0} + 1.15 (a_0 - B K \Theta_{c0})^{0.812}.$$
 (8)

При заданных *B* и a_0 из (7) и (8) находим $K\Theta_{c0}^0$ (табл. 1). При определении зависимости для $K\Theta_{c0}^{max}$ будем рассуждать следующим образом: потери напора в струйном элементе h_{f1-3} определяются величиной $p_p/(\rho g) = a_0 - b_1 Q_{p0}^{max} - b_2 (Q_p^{max})^2$ и вместе с тем пропорциональны $K\Theta_{c0}^{max}$. Тогда можно записать

$$\frac{p_{\rm p}}{\rho g} = \xi {\rm K} \Im_{\rm c0}^{\rm max}, \tag{9}$$

где ξ – коэффициент пропорциональности, который в соответствии с опытными данными для рассматриваемого случая определен как ξ = 105, $2\omega_r^2 / \omega_e^2$; ω_r и ω_c – площади отверстия горловины и сопла соответственно.

Таким образом

$$K\Theta_{c0} = \frac{K\Theta_{c0}^{0}}{1 + K\Theta_{c0}^{0} 2g\omega_{c}^{2} / (Q_{p0}^{max})^{2}},$$
 (10)

где

$$Q_{\rm p0}^{\rm max} = \sqrt{2g\omega_{\rm c}^2 {\rm K} \Im_{\rm c0}^{\rm max}}.$$
 (11)

Учтем также, что

$$Q_{\rm p0} = \sqrt{2g\omega_{\rm c}^2 \mathrm{K} \Theta_{\rm c0}}.$$
 (12)

Сопоставления расчетных по (10)-(12) и опытных данных представлены на рис. 3 и 4.

Рис. 3. Зависимость $K \mathcal{B}_{c0} = f(d_c)$: линии – расчет по (10); точки – опытные данные

Анализ графиков на рис. З показывает, что максимальные значения $K\Theta_{c0}$ наблюдаются при стремлении d_c к нулю. И, наоборот, при увеличении d_c значения $K\Theta_{c0}$ уменьшаются и в конечном итоге начинают стремиться к нулю, что полностью согласуется с физическим смыслом изучаемого процесса и подтверждает корректность полученной расчетной зависимости (10).

Рис. 4. Зависимость $Q_{p0}/Q_{p0}^{max} = f(d_c/d_c^{max})$: линии – расчет по (11) и (12); точки – опытные данные

Расчетные формулы для изменяющихся значений Q_p и h_B с возрастанием Z можно получить на основании анализа совместной работы трубопровода и насосной установки (рис. 5).

Первая производная от $p_{\rm H}/(\rho g)$

$$\frac{p_{\rm H}}{\rho g} = \frac{dh_f}{dQ_{\rm p}} = -a_1 - 2a_2Q_{\rm p}.$$
(13)

Анализируя рис. 5, найдем

$$dh_f = a_1 dQ_p + 2a_2 Q_{p0} dQ_p - a_2 dQ_p^2 - dZ.$$
 (14)

Из (13) получим

$$dh_{f} = dQ_{p} \left(-a_{1} - 2a_{2}Q_{p} \right).$$
(15)

Из (14) и (15) получим

$$dZ = 2a_1 dQ_p + 2a_2 Q_p dQ_p + 2a_2 Q_{p0} dQ_p - a_2 dQ_p^2.$$
 (16)

Последним членом в (16) пренебрегаем и после интегрирования получаем

$$Z = 2a_1(Q_{p0} - Q_p) + a_2(Q_{p0}^2 - Q_p^2) + 2a_2Q_p(Q_{p0} - Q_p).$$
(17)

Пренебрегая средним членом в (17), получим

$$Q_{\rm p} = Q_{\rm p0} - \frac{1}{2(a_{\rm 1} + a_{\rm 2}Q_{\rm p0})}Z.$$
 (18)

Расчет Q_{p0} в (18) производили по формуле (12). Значения коэффициентов a_1 и a_2 зависят от параметров насосной установки. Например, при работе двух насосов (НУ2–НУ4, табл. 1) $a_1 = 34100$ и $a_2 = -3910000$. Для этого случая $Q_p = 0,0000169Q_{p0}$.

Из формулы (18) видно, что при увеличении противонапора Z расход воды Q_p уменьшается по сравнению с Q_{p0} , что приводит к уменьшению вакуума $h_{\rm B}$ по сравнению с $h_{\rm B0}$.

вакуума $h_{\rm B}$ по сравнению с $h_{\rm B0}$. Причем опытные данные показывают, что зависимость $h_{\rm B} = f(Z)$ имеет линейный вид. Величину вакуума $h_{\rm B}$ можно определять по формуле (4) при подстановке в нее соответствующих значений $Q_{\rm p}$ и КЭ_с = $Q_{\rm p}/(2g\omega_{\rm c}^2)$. Например, для рассматриваемого случая зависимость $h_{\rm B} = f(Z)$ приобретает следующий вид:

$$h_{\rm p} = h_{\rm p0} - 1,165Z.$$
 (19)

Сопоставление расчетных по (19) и опытных данных представлено на рис. 6.

Рис. 6. Зависимость $h_{\rm B} = f(Z)$: линии – расчет по (19); точки – опытные данные

выводы

В результате теоретических и экспериментальных исследований предложена формула (4) для расчетов величины вакуума при работе вакуумных установок. Выявлена степень влияния геометрических параметров струйного устройства и гидромеханических параметров на величину вакуума. Создана основа для усовершенствования методики расчетов вакуумных установок, используемых в различных отраслях промышленности.

ЛИТЕРАТУРА

1. Л я м а е в, Б. Ф. Гидроструйные насосы и установки / Б. Ф. Лямаев. – Л.: Машиностроение, 1988. – 278 с.

2. Соколов, Е. Я. Струйные аппараты / Е. Я. Соколов, Н. М. Зингер. – 3-е изд., перераб. – М.: Энергоатомиздат, 1989. – 352 с.

3. К р а в ц о в, М. В. Расчет подачи воды в гидроструйные аппараты / М. В. Кравцов, А. М. Кравцов // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2006. – № 4. – С. 80–86.

Представлена кафедрой гидравлики и гидравлических машин

Поступила 02.08.2012