дования надежности больших систем энергетики. – Вып. 62: Проблемы надежности существующих и перспективных систем энергетики и методы их решения / отв. ред. Н. И. Воропай, В. А. Савельев. – Иваново: ПресСто, 2011. – С. 11–17.

4. Ч у к р е е в, Ю. Я. Проблемы сравнения отечественных и зарубежных вероятностных показателей балансовой надежности ЭЭС / Ю. Я. Чукреев // Методические вопросы исследования надежности больших систем энергетики. – Вып 62: Проблемы надежности существующих и перспективных систем энергетики и методы их решения / отв. ред. Н. И. Воропай, В. А. Савельев. – Иваново: ПресСто, 2011. – С. 95–103.

5. А л е к с а н д р о в, О. И. Оптимизация суточного режима энергосистемы / О. И. Александров, С. В. Домников, Г. Г. Бабкевич // Известия РАН. Энергетика и транспорт. – 1993. – № 1. – С. 81–97.

6. Маркович. – М.: Энергия, 1969. – 351 с.

7. Надежность систем энергетики: достижения, проблемы, перспективы / Г.Ф. Ковалев [и др.]; под ред. Н.И. Воропая. – Новосибирск: Наука, Сиб. отд. РАН, 1999. – 204 с.

8. С к о п и н ц е в, В. А. Качество электроэнергетических систем: надежность, безопасность, экономичность, живучесть / В. А. Скопинцев. – М.: Энергоатомиздат, 2009. – 331 с.

9. А л е к с а н д р о в, О. И. Расчет оптимальных графиков электропотребления промышленного узла нагрузки / О. И. Александров // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 1994. – № 3. – С. 16–20.

10. А л е к с а н д р о в, О. И. Математическая модель оптимизации электроснабжения дефицитных регионов по межсистемным линиям связи / О. И. Александров, М. Ш. Мисриханов, Н. В. Радоман // Методические вопросы исследования надежности больших систем энергетики. – Вып. 62: Проблемы надежности существующих и перспективных систем энергетики и методы их решения / отв. ред. Н. И. Воропай, В. А. Савельев. – Иваново: ПресСто, 2011. – С. 468–476.

11. Ф у р с а н о в, М. И. Многоуровневые балансы электроэнергии в электрических сетях Белорусской энергосистемы / М. И. Фурсанов, А. А. Золотой, В. В. Макаревич // Материалы Десятой Междунар. науч.-техн. конф. «Наука – образованию, производству, экономике». – Минск: БНТУ, 2012.

Представлена кафедрой электротехники и электроники БНТУ

Поступила 31.01.2013

УДК 621.32

ВЛИЯНИЕ ВЕЛИЧИНЫ НАПРЯЖЕНИЯ НА РЕЖИМ РАБОТЫ СЕТИ НАРУЖНОГО ОСВЕЩЕНИЯ

Канд. техн. наук, доц. КОЗЛОВСКАЯ В. Б., инж. КАЛЕЧИЦ В. Н.

Белорусский национальный технический университет

Расход электроэнергии на освещение составляет около 13–15 % общего электропотребления, при этом на долю наружного освещения приходится примерно 0,4 % общегородского. Можно выделить несколько особенностей сетей наружного освещения, оказывающих существенное влияние на режимы их работы. Линии наружного освещения являются достаточно протяженными, содержащими 30 и более светильников, расположенных на расстоянии 35–50 м друг от друга. Единичная мощность лампы в сети составляет от 70 до 400 Вт. Управление светильниками наружного освещения осуществляется со шкафов, каждый из которых охватывает расстояние 1,0–1,5 км. Такие протяженные линии со значительными нагрузками являются очень чувствительными к колебаниям напряжения, поэтому грамотное построение их с точки зрения оптимального распределения нагрузок, протяженности и сечения проводников является актуальной задачей. Величина напряжения оказывает существенное влияние на показатели электропотребления и эксплуатационные характеристики различных ламп [1]. Эффективность и условия эксплуатации светильников наружного освещения определяются режимом работы сети.

Наиболее широко в наружном освещении применяются натриевые лампы высокого давления в светильниках, подключенных к одной из фаз через электромагнитный пускорегулирующий аппарат (ЭмПРА) с импульсным зажигающим устройством и (или без) индивидуальным компенсирующим конденсатором. Выбор групповой или индивидуальной компенсации для каждого светильника осуществляется технико-экономическим расчетом [2].

Существующие установки наружного освещения состоят из пунктов питания, имеющих канал связи с центральным диспетчерским пунктом, от которого поступают команды управления освещением (включение/отключение, смена режима и т. д.). Наружное освещение может включаться вручную из диспетчерского пункта или автоматически. В пунктах питания осуществляются коммутация, управление, контроль и учет; они могут располагаться в трансформаторных подстанциях (10/0,4 кВ) или непосредственно на световых опорах.

Расчет параметров электрической сети наружного освещения имеет характерные особенности. Характеристикой светильника как электроприемника являются потребляемая активная и реактивная мощности, ток нагрузки, которые зависят от напряжения на зажимах светильника. Если это не учитывать, то расчетные потери напряжения и расчетные напряжения на зажимах светильников, разноудаленных от пункта питания, будут иметь значения, отличающиеся от фактических.

В целях рассмотрения важности учета перечисленных особенностей произведем сравнение работы сети наружного освещения в различных условиях. Оценим влияние уровня напряжения в начале линии наружного освещения (пункт питания) на параметры такой сети: мощность, потребляемую электроэнергию, величину светового потока, срок службы ламп. Для решения поставленной задачи зададимся исходными данными электрической сети наружного уличного освещения: используем лампы типа ДНаТ (дуговая натриевая трубчатая) мощностью 250 Вт, подключенные через ЭмПРА с импульсным зажигающим устройством и компенсирующим конденсатором (коэффициент мощности $\cos \phi = 0.9$) в светильнике типа ЖКУ. Удаленность от источника питания до первой опоры равна 70 м. расстояние между опорами – 30 м (принимаем, что приблизительно соответствует длине используемого кабеля), число опор – 30, число светильников на опоре – 1. Для питания светильников используется кабель АВВГ-5×10-0,66. Светильники подключены симметрично (к каждой фазе по 10 светильников), распределение светильников между фазами – А-В-С-А-В-С.

Эксплуатационные условия работы электрических сетей определяются исходными данными, в качестве которых для расчета режима задают напряжение в начале линии наружного освещения (в пункте питания), а также нагрузку непосредственно на светильнике.

Нагрузку на светильнике (лампа и пускорегулирующий аппарат) принимаем по активной мощности и полному току, которые зависят от уровня напряжения на зажимах светильника. Относительные значения потребляемой активной мощности P(U) и полного тока I(U) в зависимости от напряжения на зажимах светильника для лампы типа ДНаТ с компенсированным ЭмПРА определяются в соответствии с [3].

Номинальные технические характеристики светильника: активная мощность лампы 250 Вт, активная мощность с учетом потерь в ЭмПРА $P_{\text{ном}} = 278$ Вт; номинальное напряжение $U_{\text{ном}} = 220$ В; емкость компенсирующего конденсатора C = 35 мкФ; полный рабочий ток лампы $I_{\text{л.ном}} = 3,0$ А; полный ток с учетом компенсации $I_{\text{ном}} = 1,35$ А. Для упрощения расчетов принимаем, что величины потерь активной мощности и полный ток с учетом компенсации реактивной мощности изменяются пропорционально зависимостям, представленным в [3].

Тогда зависимости активной мощности (с учетом потерь в ЭмПРА) и полного тока (с учетом компенсации) светильника с лампой типа ДНаТ с компенсированным ЭмПРА номинальной мощностью 278 Вт от напряжения сети имеют вид, представленный на рис. 1.

Рис. 1. Зависимости активной мощности (с учетом потерь в ЭмПРА) P(U) и полного тока (с учетом компенсации) I(U) светильника с лампой типа ДНаТ с компенсированным ЭмПРА номинальной мощностью 278 Вт от напряжения сети

Расчет режима такой сети наружного освещения осуществляем методом последовательных приближений [4]. В осветительной сети используется глухозаземленная нейтраль в виде системы TN-S (с разделением нулевого проводника на рабочий и защитный). Расчетная схема представлена на рис. 2 (нулевой защитный проводник не показан). Для удобства написания программы по расчету режима осветительную линию делим на число участков, равное числу светильников, поэтому участки для каждой из трех фаз и нулевого рабочего проводника одинаковы независимо от наличия присоединения светильника к рассматриваемой фазе.

Рис. 2. Расчетная схема сети наружного освещения: <u>U</u>_{A,1}- комплексное значение напряжения в 1-м узле фазы A;
 <u>S</u>ⁿ_{A,1-2}, <u>S</u>^k_{A,1-2} - комплексные значения полной мощности в начале и конце участка 1-2 фазы A соответственно; <u>S</u>ⁿ_{A,1} - комплексное значение полной мощности светильника, подключенного к фазе A, имеющего первый порядковый номер; <u>ΔS</u>_{A,1-2} - комплексное значение потерь полной мощности на участке 1-2 фазы A; <u>Z</u>_{A,1-2}, <u>Z</u>_{N,1-2} - комплексные значения полных сопротивлений участка для фазы A и нулевого рабочего проводника N;
 <u>ΔU</u>_{A,1-2}, <u>ΔU</u>_{N,1-2} - падения напряжения на участке 1-2 фазы A и нулевого рабочего проводника N; <u>I</u>_{A,1-2}, <u>ΔU</u>_{N,1-2} - комплексные значения полных токов на участке 1-2 фазы A и нулевого рабочего проводника N; <u>I</u>_{A,1} - комплексное значение полного тока светильника, имеющего первый порядковый номер (обозначения параметров фазB и C аналогичны)

Расчет сети при значении напряжения в пункте питания (начале линии), равном 230 В, показан на примере фазы *А*. Нахождение параметров для фаз *В* и *С* аналогичны.

Определение параметров осуществляется итерационным путем в два этапа. Первоначально задаются значения неизвестных фазных напряжений на зажимах светильников и в остальных точках схемы (рис. 2), например равными фазному напряжению в начале линии (пункте питания):

$$\underline{U}_{A,2}^{(0)} = \underline{U}_{A,3}^{(0)} = \dots = \underline{U}_{A,29}^{(0)} = \underline{U}_{A,1}^{(0)} = 230e^{j0} \text{ B};$$

$$\underline{U}_{B,2}^{(0)} = \underline{U}_{B,3}^{(0)} = \dots = \underline{U}_{B,30}^{(0)} = \underline{U}_{B,1}^{(0)} = 230e^{-j120^{\circ}} \text{ B};$$

$$\underline{U}_{C,2}^{(0)} = \underline{U}_{C,3}^{(0)} = \dots = \underline{U}_{C,31}^{(0)} = \underline{U}_{C,1}^{(0)} = 230e^{j120^{\circ}} \text{ B}.$$

Комплексное значение полной мощности светильника в первом приближении определяется как

$$\underline{S}_{A,n}^{\pi(1)} = U_{A,n}^{(0)} I(U_{A,n}^{(0)}) e^{j \cdot \arccos\left(\frac{P(U_{A,n}^{(0)})}{U_{A,n}^{(0)} \cdot I(U_{A,n}^{(0)})}\right)},$$
(1)

где $R(U_{A,n}^{(0)})$ и $I(U_{A,n}^{(0)})$ – значения потребляемой активной мощности и полного тока, определяемые в соответствии с зависимостями рис. 1; индекс (1) – первое приближение; A – наименование фазы; n – номер узла.

Комплексное значение потерь полной мощности на участке ((n-1) - n)

$$\Delta \underline{S}_{A,(n-1)-n}^{(1)} = \left(\frac{S_{A,(n-1)-n}^{\kappa(1)}}{U_{A,n}^{(0)}}\right)^2 (R_{A,(n-1)-n} + jX_{A,(n-1)-n}),$$
(2)

где $R_{A,(n-1)-n}$, $X_{A,(n-1)-n}$ – активное и реактивное сопротивления участка; $S_{A,n-1}^{\kappa(1)}$, $U_{A,n}^{(0)}$ – полная мощность и напряжение в конце ((n-1) – n) участка.

Комплексное значение полной мощности в начале участка ((n - 1) - n)

$$\underline{S}_{A,(n-1)-n}^{\text{H}(1)} = \underline{S}_{A,n}^{n(1)} + \Delta \underline{S}_{A,(n-1)-n}^{(1)} + \underline{S}_{A,n-(n+1)}^{\text{H}(1)},$$
(3)

где $S_{A,(n-1)-n}^{\kappa(1)} = \underline{S}_{A,n}^{\pi(1)} + \underline{S}_{A,n-(n+1)}^{\mu(1)}$.

Расчет потокораспределения аналогично выполняется поочередно для каждого участка. На этом первый этап алгоритма заканчивается.

Второй этап заключается в расчете уточненных значений фазных напряжений при известном напряжении в начале линии (пункте питания)

$$\underline{U}_{A,2}^{(1)} = \underline{U}_{A,1}^{(1)} - \Delta \underline{U}_{A,N;1-2}^{(1)}.$$
(4)

Падение напряжения на участке 1-2

22

$$\Delta \underline{U}_{A,N;1-2}^{(1)} = \underline{I}_{A,1-2}^{(1)} \underline{Z}_{A,1-2} + \underline{I}_{N,1-2}^{(1)} \underline{Z}_{N,1-2},$$
(5)

где $Z_{A,1-2}$, $Z_{N,1-2}$ – комплексные значения полных сопротивлений участка для фазы A и нулевого рабочего проводника N.

Комплексные значения полных токов на участке 1-2 равны:

$$\underline{I}_{A,1-2}^{(1)} = \frac{\underline{\dot{S}}_{A,1-2}^{\text{H}(1)}}{\underline{\dot{U}}_{A,1}^{(0)}};$$
(6)

$$\underline{I}_{N,1-2}^{(1)} = \sum_{i=2}^{n} \left[\frac{\underline{\dot{S}}_{A,i}^{\pi(1)}}{\underline{\dot{U}}_{A,i}^{(0)}} + \frac{\underline{\dot{S}}_{B,i}^{\pi(1)}}{\underline{\dot{U}}_{B,i}^{(0)}} + \frac{\underline{\dot{S}}_{C,i}^{\pi(1)}}{\underline{\dot{U}}_{C,i}^{(0)}} \right],\tag{7}$$

где $\dot{S}_{A,1-2}^{\text{H}(1)}$, $\dot{U}_{A,1}^{(0)}$ – сопряженные комплексы мощности, фазного напряжения.

Далее последовательно рассчитываются напряжения остальных узлов схемы.

На этом первое приближение (итерация) расчета завершено. Для уточнения значений напряжений и мощностей производятся повторные расчеты с использованием более точных значений напряжений, полученных из предыдущей итерации (т. е. для второй итерации используются фазные напряжения из первой $\underline{U}_n^{(1)}$).

Расчет повторяем до тех пор, пока разность между модулями напряжений U_n *k*-го и (*k* + 1)-го приближений не будет превышать допустимую погрешность ε , которую принимаем равной 0,001:

$$\delta U_n = \left| U_n^{k+1} - U_n^k \right| \le \varepsilon. \tag{8}$$

Программа, позволяющая задавать исходные данные сети наружного освещения и рассчитывать параметры, реализована в среде MathCad.

Отклонение напряжения на выводах электроприемников является одним из показателей качества электрической энергии и регламентируется ГОСТ 13109–97 «Нормы качества электроэнергии в системах электроснабжения общего назначения». В соответствии с указанным документом выделяются нормально и предельно допустимые значения установившегося отклонения напряжения на выводах электроприемников, которые соответственно равны $\pm 5 \%$ и $\pm 10 \%$ от номинального напряжения электрической сети. В связи с этим для рассмотренной осветительной сети произведены расчеты для трех характерных режимов, определяемых величиной напряжения в пункте питания: режима работы осветительной сети с модулем напряжения в пункте питания, равным номинальному $U_1 = 230$ В, и двух режимов с предельно допустимыми значениями ($\pm 10 \%$) отклонения напряжения от номинального в пункте питания $U_1 = 207$; 253 В.

Результаты сравнительных расчетов представлены в табл. 1, 2.

-	Модуль полного значения напряжения на выводах и комплексное значение полной мощности для светильников (в зависимости от напряжения в начале линии), присоединенных к																		
Номер светильника	фазеА					фазеВ					фазеС								
	$U_1 = 230 \text{ B}$		U_1	$U_1 = 207 \text{ B}$		$U_1 = 253 \text{ B}$		$U_1 = 230 \text{ B}$		$U_1 = 207 \text{ B}$		$U_1 = 253 \text{ B}$		$U_1 = 230 \text{ B}$		$U_1 = 207 \text{ B}$		$U_1 = 253 \text{ B}$	
	U_A, \mathbf{B}	\underline{S}_{A}^{π} , B·A	U_A, \mathbf{B}	$\underline{S}_{A}^{\pi}, \mathbf{B} \cdot \mathbf{A}$	U_A, \mathbf{B}	\underline{S}_{A}^{π} , B·A	U_B, \mathbf{B}	\underline{S}_{B}^{π} , , B·A	U_B, \mathbf{B}	\underline{S}_{B}^{π} , B·A	U_B, \mathbf{B}	$\underline{S}^{\pi}_{B}, \mathbf{B}\cdot\mathbf{A}$	U_C, \mathbf{B}	\underline{S}_C^{π} , B·A	U_C, \mathbf{B}	\underline{S}_C^{π} , B·A	U_C, \mathbf{B}	$\underline{S}_C^{\pi}, \mathbf{B} \cdot \mathbf{A}$	
1	227,2	301,6 + + <i>j</i> 95,6	204,5	234,2 + + <i>j</i> 110,0	249,7	383,3 + + <i>j</i> 28,1	226,0	297,8 + + <i>j</i> 97,1	203,5	231,7 + + <i>j</i> 110,1	248,4	379,2 + + <i>j</i> 30,1	224,9	294,1 + + <i>j</i> 98,5	202,4	228,8 + + <i>j</i> 110,2	247,2	375,9 + + <i>j</i> 31,8	
2	224,1	291,6 + + <i>j</i> 99,5	201,8	227,1 + + <i>j</i> 110,3	246,2	373,0 + + <i>j</i> 33,3	222,8	287,2 + + <i>j</i> 101,1	200,6	223,8 + + <i>j</i> 110,5	244,7	368,5 + + <i>j</i> 35,7	221,7	283,5 + + <i>j</i> 102,5	199,5	221,1 + + <i>j</i> 110,0	243,6	365,4 + + <i>j</i> 37,4	
3	221,5	282,8 + + <i>j</i> 102,7	199,5	221,0 + + <i>j</i> 109,9	243,1	364,0 + + <i>j</i> 38,2	219,9	277,8 + + <i>j</i> 104,5	198,1	218,5 + + <i>j</i> 108,3	241,4	359,1 + + <i>j</i> 40,8	218,8	274,7 + + <i>j</i> 105,1	197,0	216,3 + + <i>j</i> 107,0	240,4	356,0 + + <i>j</i> 42,5	
4	219,2	275,7 + + <i>j</i> 104,9	197,4	217,1 + + <i>j</i> 107,5	240,4	356,2 + + <i>j</i> 42,4	217,4	270,9 + + <i>j</i> 105,8	195,9	214,3 + + <i>j</i> 105,8	238,6	348,7 + + <i>j</i> 53,2	216,4	267,8 + + <i>j</i> 106,3	194,8	212,0 + + <i>j</i> 104,5	237,6	344,3 + + <i>j</i> 59,2	
5	217,2	270,3 + + <i>j</i> 105,9	195,7	213,9 + + <i>j</i> 105,6	238,2	346,9 + + <i>j</i> 55,7	215,3	264,9 + + <i>j</i> 106,9	194,0	210,7 + + <i>j</i> 103,7	236,1	337,9 + + <i>j</i> 66,9	214,2	261,8 + + <i>j</i> 107,4	192,8	208,4 + + <i>j</i> 102,4	235,2	333,8 + + <i>j</i> 71,4	
6	215,7	265,5 + + <i>j</i> 106,7	194,3	211,3 + + <i>j</i> 104,1	236,3	338,9 + + <i>j</i> 65,8	213,5	259,9 + + <i>j</i> 107,8	192,5	207,7 + + <i>j</i> 102,1	234,1	328,9 + + <i>j</i> 76,3	212,4	256,8 + + <i>j</i> 108,4	191,2	205,3 + + <i>j</i> 100,8	233,2	325,1 + + <i>j</i> 80,0	
7	214,5	262,5 + + <i>j</i> 107,3	193,3	209,2 + + <i>j</i> 102,9	234,9	332,7 + + <i>j</i> 72,6	212,1	255,9 + + <i>j</i> 108,5	191,2	205,3 + + <i>j</i> 100,8	232,4	321,7 + + <i>j</i> 83,0	211,0	252,8 + + <i>j</i> 109,1	189,9	202,8 + + <i>j</i> 99,5	231,6	318,0 + + <i>j</i> 86,2	
8	213,6	260,1 + + <i>j</i> 107,7	192,5	207,8 + + <i>j</i> 102,1	233,9	328,3 + + <i>j</i> 76,9	211,0	252,9 + + <i>j</i> 109,1	190,2	203,5 + + <i>j</i> 99,9	231,2	316,2 + + <i>j</i> 87,7	209,9	249,6 + + <i>j</i> 109,7	188,9	200,9 + + <i>j</i> 98,5	230,4	312,6 + + <i>j</i> 90,6	
9	213,1	258,7 + + <i>j</i> 108,0	192,1	207,0 + + <i>j</i> 101,7	233,4	325,9 + + <i>j</i> 79,2	210,3	250,8 + + <i>j</i> 109,5	189,6	202,2 + + <i>j</i> 99,1	230,3	312,5 + + <i>j</i> 90,7	209,1	247,5 + + <i>j</i> 109,7	188,1	199,6 + + <i>j</i> 97,8	229,5	309,4 + + <i>j</i> 92,6	
10	213,0	258,3 + + <i>j</i> 108,1	192,0	206,7 + + <i>j</i> 101,5	233,3	325,5 + + <i>j</i> 79,6	209,9	249,6 + + <i>j</i> 109,7	189,2	201,5 + + <i>j</i> 98,8	229,9	310,7 + + <i>j</i> 92,0	208,6	246,1 + + <i>j</i> 109,7	187,8	198,8 + + <i>j</i> 97,4	229,0	307,6 + + <i>j</i> 93,3	

Результаты сравнительных расчетов при различных уровнях напряжения в пункте питания

Таблица 1

Таблииа 2

Режим работы сети	Комплекснь	ие значения полн	Комплексное значение				
в зависимости	для каждой	і из фаз в пункте	полной мощности для				
от напряжения	c	C	C	схемы с напряжением			
в пункте питания	<u>3</u> A,1	$\underline{\mathbf{S}}_{B,1}$	<u>3</u> C,1	в пункте питания <u>S_{Σ}</u> , B·A			
$U_1 = 230 \text{ B}$	2909 + j1051	2861 + j1064	2842 + j1071	8612 + <i>j</i> 3186			
$U_1 = 207 \text{ B}$	2307 + j1059	2280 + j1043	2266 + j1032	6853 + <i>j</i> 3134			
$U_1 = 253 \text{ B}$	3693 + <i>j</i> 576	3614 + <i>j</i> 662	3596 + <i>j</i> 691	10903 + j1929			

Результаты сравнительных расчетов величин суммарных мощностей в начале линии наружного освещения при различных уровнях напряжения в пункте питания

выводы

Установлено, что уровень напряжения значительно влияет на активную и реактивную мощности, количество потребляемой электроэнергии светильниками с лампами типа ДНаТ. Также заметно изменяется световой поток лампы. Необходимо учитывать, что длительная работа при отклонениях сетевого напряжения более чем на 5 % от номинального значения приводит к сокращению срока службы лампы ДНаТ [5].

Представлена программа, позволяющая осуществлять выбор величины напряжения в пункте питания для работы осветительной сети в оптимальном режиме. Исходя из параметров режима могут проводиться мероприятия по улучшению условий работы источников света. Для этих целей рассматривается возможность использования стабилизатора (регулятора) напряжения, расположенного в пункте питания и работающего в режиме поддержания напряжения на заданном необходимом уровне. Это связано с тем, что режим работы с превышением уровня напряжения на лампе более чем на 5 % от номинального значения вызывает не только снижение срока службы источника света, но и больший расход активной электроэнергии. Зная режим работы осветительной сети (величину напряжения в начале сети, время включения и отключения освещения в зависимости от местности и времени года), можно определить возможную экономию электроэнергии. Кроме того, программа позволяет находить оптимальное число светильников заданной мощности, подключаемых к сети с установленными параметрами (сечение кабеля, удаленность опор).

ЛИТЕРАТУРА

1. К о з л о в с к а я, В. Б. Электрическое освещение: учеб. / В. Б. Козловская, В. Н. Радкевич, В. Н. Сацукевич. – Минск: Техноперспектива, 2011. – 543 с.

2. Правила устройства электроустановок. – 6-е изд. – М.: Госэнергонадзор, 2000.

3. С п р а в о ч н а я книга по светотехнике / под ред. Ю. Б. Айзенберга. – 3-е изд., перераб. и доп. – М.: Знак, 2006. – 972 с.

4. Герасименко, А. А. Передача и распределение электрической энергии / А. А. Герасименко, В. Т. Федин. – 2-е изд. – Ростов н/Д.: Феникс, 2008. – 715 с.

5. Рохлин. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1991. – 720 с.

Представлена кафедрой

электроснабжения

Поступила 31.01.2013