УСТОЙЧИВОСТЬ НЕСУЩИХ ЭЛЕМЕНТОВ КОНСТРУКЦИИ ПРИ СОПРЯЖЕННЫХ ВОЗДЕЙСТВИЯХ ФИЗИЧЕСКИХ ТЕМПЕРАТУРНЫХ ПОЛЕЙ И МЕХАНИЧЕСКИХ ЛОКАЛИЗОВАННЫХ И РАСПРЕДЕЛЕННЫХ ВНЕШНИХ СИЛОВЫХ НАГРУЗОК

¹ Агаев В.Н., ¹ Мартыненко Т.М., ² Скляр О.Н., ² Мартыненко И.М.

¹ Университет гражданской защиты МЧС Республики Беларусь, Минск ²УО «Белорусский национальный технический университет», Минск

Пластины и оболочки являются наиболее распространенными составными элементами инженерных конструкций. Повышенные требования к прочности и надежности при уменьшении материалоемкости создают сложные проблемы анализа напряженно-деформированного состояния (НДС) тонкостенных тел в условиях взаимодействия с переменными физическими полями. В связи с этим одной из задач механики тонкостенных конструкций является совершенствование методов расчета и проектирования пластин и оболочек сложной формы с различными законами изменения толщины, отверстиями, включениями, накладками при сопряженных воздействиях физических температурных полей и механических локализованных и распределенных внешних силовых нагрузок. Среди различных видов воздействий на элементы конструкций можно выделить класс термосиловых воздействий, когда неоднородность в термических условиях является сильным концентратором напряжений [1]. Термическое воздействие, играющее роль концентратора напряжений, - это неидеальный тепловой контакт. Возможная неоднородность или дефект межслоевого соединения приводят к неидеальному тепловому контакту. Эта неоднородность, локализованная в какой-либо области, являясь концентратором напряжений, может сильно влиять на распределение напряжений в конструкции [2-4]. Исследованию влияния такого вида локальных эффектов на НДС пластин и оболочек и посвящена данная работа.

Рассмотрим устойчивость тонкой подкрепленной оболочечной конструкции, квадратной и прямоугольной в плане, при действии физических температурных полей на несущие элементы конструкции. Устойчивость несущих элементов конструкции, или их поведение в условиях продольно – поперечного изгиба, зависит от формы поперечного сечения; так, стрингер с поперечным сечением, не имеющим осей симметрии, может потерять устойчивость, только одновременно скручиваясь и изгибаясь, в то время как в других случаях возможны также некоторые несвязанные формы потери устойчивости. Как и в задачах об изотермической устойчивости стержней [5], указанные вопросы возникают и тогда, когда на тело воздействует поле температур. В данной работе обсуждаются общая формулировка и решение задачи, причем для простоты анализ ограничивается важным частным случаем стержня бисимметричного сечения с минимальным главным моментом инерции I_z при этом в плоскости *xy* действует распределенная нагрузка q = q(x), а распределение температуры, таково, что $M_{Ty} = 0$. Тогда стрингерная система, не закручиваясь, изгибается в плоскости *xy*, а перемещение w=0.

Приложим силу *P*, которая считается положительной при сжатии. При этом предполагается что главная ось, соответствующая минимальному моменту инерции

поперечного сечения, перпендикулярна к плоскости xy. Так как $P = EA \frac{\partial w}{dx}$. Волны сжатия, вызываемые перемещениями концов, распространяются вдоль стрингеров со значительно большей скоростью, чем скорость, с которой происходит поперечное перемещение. Следовательно, можно считать сжимающую осевую силу P постоянной вдоль оси. Это означает, что выражение для сжимающей силы может быть заменено интегральным выражением, которое связывает сжимающую силу с перемещением ct за время t и с изменением расстояния между концевыми точками стрингера. Если поперечное сечение стрингера постоянно, то это выражение имеет вид

$$P = \frac{EA}{L} \left(ct - \frac{1}{2} \int_{0}^{L} \left(\left(\frac{\partial y}{\partial x} \right)^2 - \left(\frac{\partial y_0}{\partial x} \right)^2 \right) dx \right).$$
 [6]. Стрингерная система в конечном состоянии

получит прогиб w, а кривизна К изменится на величину

$$\delta K = \frac{d^2 w}{dx^2} + \frac{M_z + M_{T_z}}{EI_z},\tag{1}$$

связанную с действием дополнительного момента *Pw*. Исходя из обычного допущения о пропорциональности между кривизной и изгибающим моментом, получим, что

$$\delta K = -\frac{Pw}{EI_z},\tag{2}$$

или

$$EI_{z}\frac{d^{2}w}{dx^{2}} + Pw = M_{z} + M_{Tz},$$
(3)

или

$$\frac{d^2}{dx^2} \left(EI_z \frac{d^2 w}{dx^2} \right) + P \frac{d^2 w}{dx^2} = q - \frac{d^2 M_{Tz}}{dx^2}.$$
 (4)

В качестве основного уравнения для расчета нагретой стрингерной системы можно взять любое из последних двух уравнений. Их надо решить при следующих граничных условиях;

защемленный конец:
$$w = 0$$
, $\frac{dw}{dx} = 0$; (5)

свободно опертый конец
$$w = 0$$
, $EI_z \frac{d^2 w}{dx^2} = -M_{Tz}$; (6)

свободный конец
$$EI_z \frac{d^2 w}{dx^2} = -M_{Tz}, \ \frac{d}{dx} \left(EI_z \frac{d^2 w}{dx^2} \right) + P \frac{dw}{dx} = -\frac{dM_{Tz}}{dx}.$$
 (7)

В указанных уравнениях члены, содержащие температуру M_{Tz} , входят только в правые части и поэтому оказывают такое же влияние, как и добавочная нагрузка P. Решения этой задачи, можно получить теми же методами, что и для оболочек с постоянной температурой [7]. Чтобы разделить влияние температуры и поперечных нагрузок решение сформулированной выше задачи удобно представить в виде двух частей. С этой целью определим компоненты прогибов w_T и w_q следующий образом. Величина w_T – это прогиб, который имела бы конструкция, если бы она была подвержен действию только температуры и продольной силы P, а поперечные нагрузки отсутствовали. Поэтому w_T удовлетворяет дифференциальному уравнению

$$\frac{d^2}{dx^2} \left(EI_z \frac{d^2 w_T}{dx^2} \right) + P \frac{d^2 w_T}{dx^2} = -\frac{d^2 M_{Tz}}{dx^2},$$
(8)

и граничным условиям (5) – (7). Величина w_q – это прогиб, который имела бы стрингерная система, если бы на нее действовали только поперечные нагрузки и продольная сила P, а влияние температуры не учитывалось [8]. Поэтому w_q удовлетворяет дифференциальному уравнению

$$\frac{d^2}{dx^2} \left(EI_z \frac{d^2 w_q}{dx^2} \right) + P \frac{d^2 w_q}{dx^2} = q , \qquad (9)$$

и следующим граничным условиям

защемленный конец
$$w_q = 0$$
, $\frac{dw_q}{dx} = 0$; (10)

свободно опертый конец $w_q = 0$, $\frac{d^2 w_q}{dx^2} = 0$; (11)

свободный конец
$$EI_z \frac{d^2 w_q}{dx^2} = 0, \ \frac{d}{dx} \left(EI_z \frac{d^2 w}{dx^2} \right) + P \frac{dw}{dx} = 0.$$
 (12)

Решение полной задачи, когда действуют все нагрузки, можно представить в виде $w = w_T + w_q$. Основное преимущество указанного способа заключается в том, что составляющая прогиба w_q представляет собой решение задачи о продольно-поперечном изгибе. Что касается w_T , то ее в общем приходится определять для каждой конкретной задачи заново.

Рассмотрим случай, когда распределение температуры по длине представляется многочленом степени не выше третьей[9]

$$M_{Tz} = a_0 + a_1 x + a_2 x^2 + a_3 x^3 . aga{13}$$

В этом случае для стрингерной системы постоянного сечения уравнение (12) можно записать в виде

$$\frac{d^4V}{dx^4} + k^2 \frac{d^2V}{dx^2} = 0, \qquad (14)$$

где

$$V = w_T + \frac{M_{Tz}}{P}, \qquad (15)$$

и введено обозначение $k = \sqrt{\frac{P}{EI_z}}$. (16)

В этом случае непосредственно находим

$$w_T = \frac{M_{Tz}}{P} + b_0 + b_1 x + b_2 \sin kx + b_3 \cos kx$$
(17)

и затем, определяя из граничных условий (9) – (11) постоянные b_i , получаем окончательное решение.

Вычислим в явном виде значения прогиба w_T по формуле (17) для трех важных частных примеров, причем ограничимся случаем $a_2 = a_3 = 0$, так что

$$M_{T_z} = a_0 + a_1 x. (18)$$

Предположим, что стрингерная система имеет постоянное сечение, а его длина ограничена координатами x = 0 и x = L.

1. Оба конца защемлены. В этом случае продольная сила не влияет на прогиб w_T и поэтому (при нагрузке меньше критической) решение имеет вид

$$w_T = 0$$
 при $P < P_{\kappa p.} = \frac{4\pi^2 E I_z}{L^2}$, (19)

Однако, если бы постоянные a_2 и a_3 не равнялись нулю, то прогиб также отличался бы от нуля; он зависел бы от усилия Р и бесконечно возрос бы при критическом значении усилия, соответствующем условию $kL = 2\pi$, т. е. при значении $P_{\kappa p.} = \frac{4\pi^2 E I_z}{r^2}$, что равно критическому усилию для стрингерной системы с двумя

защемленными концами.

2. Оба конца свободно оперты. В этом случае решение имеет вид

$$w_T = -\frac{a_0}{P} \left(\frac{\cos kL - 1}{\sin kL} \sin kx + 1 - \cos kx \right) - \frac{a_1}{P} \left(x - L \frac{\sin kx}{\sin kL} \right), \tag{20}$$

и w_T стремится к бесконечности при $kL = \pi$, когда величина усилия *P* становится равной критическому значению для стрингерной системы данного типа, т.е. когда $P_{\kappa p.} = \frac{\pi^2 E I_z}{I^2}.$

3. Консоль конец x = 0 заделан, конец x = L свободен. При указанных условиях на концах прогиб равен

$$w_T = -\frac{a_0}{P} \frac{1 - \cos kx}{\cos kL} - \frac{a_1}{P_k} \left(\left(\frac{kL - \sin kL}{\cos kL} \right) (1 - \cos kx) + kx - \sin kx \right), \tag{21}$$

Прогиб становится бесконечным при $kL = \frac{\pi}{2}$, когда усилие *P* принимает

значение $P_{\kappa p.} = \frac{\pi^2 E I_z}{\Delta I^2}$ что соответствует критическому усилию для консольного

операния.

Напомним, что с точки зрения точной теории термоупругости указанные формулировки являются приближенными. Подытоживая результаты расчетов для пластин и оболочек, можно сделать вывод о характере напряженно-деформированного состояния пластин и оболочек, подвергаемых локальному нагреву. При локальном нагреве тонкостенного элемента возникает температурное поле, характеризуемое локализацией в области пятна нагрева. При решении задачи в стационарной постановке максимум интенсивности приходится на центр пятна нагрева. При решении нестационарной задачи максимум интенсивности нестационарных напряжений приходится в начальное время на область края пятна нагрева, и по мере прогрева максимум переходит в центр пятна нагрева.

Заключение. Повышение работоспособности зависит от частоты расположения и жесткости подкрепляющих элементов, которые весьма сложным образом влияют на процесс динамического деформирования и в частности на то, какая форма потери устойчивости (общая или местная) будет доминирующей. Результаты решения позволяют более детально назначать прочностные критерии для оболочек работающих под действием контактных термодинамических нагрузок.

ЛИТЕРАТУРА

1. Вольмир, А.С. Устойчивость деформируемых систем / А.С. Вольмир. – М. : Наука, 1967. – 984 с.

- 2. Власов, В.З. Общая теория оболочек / В.З. Власов. М. : Физматгиз, 1949. 784 с.
- 3. Блейх, Ф. Устойчивость металлических конструкций / Ф. Блейх. М. : Физматгиз, 1959. – 544 с.
- 4. Тимошенко, С.П. Пластинки и оболочки / С.П.Тимошенко, С.В. Войковский-Кригер. – М. : Физматгиз, 1963.
- 5. Белов, Н.Н. Расчет железобетонных конструкций на взрывные и ударные нагрузки / Н.Н. Белов, Д.Г. Компаница, О.Г. Кумпяк, Н.Т. Югов. Томск : STT, 2004. 465 с.
- 6. Bangash, M.Y.H. Explosion-Resistant Building Structures / M.Y.H. Bangash, T. Bangash; Design, Analysis, and Case Studies. Berlin : Springer, 2006. 450 c.
- 7. Новожилов В.В. Теория тонких оболочек. Л.: Судпромгиз, 1962.– 432 с.
- 8. Abaqus. Analysis User's Manual. Introduction, Spatial Modeling, and Execution. Publisher Simulia, 2008. 711 p.
- 9. Matsagar Vasant A. Computing stress and displacement response of composite plates under blast. Disaster Advances. 2014. Vol. 7, No 1. P. 23–38.