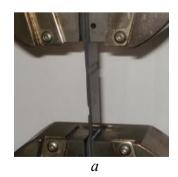
ОПРЕДЕЛЕНИЕ СДВИГОВОЙ ПРОЧНОСТИ НАПРАВЛЕННО-АРМИРОВАННЫХ УГЛЕПЛАСТИКОВ

¹Шилько С.В., ¹Рябченко Т.В. ²Романович С.И., ³Choe H.

¹Государственное научное учреждение «Институт механики металлополимерных систем имени В.А. Белого Национальной академии наук Беларуси», Гомель


²ООО «Гидромания», Минск

³Koomin University, Seoul, South Korea

Введение. Среди конструкционных композиционных материалов рекордными характеристиками прочности и модуля упругости, в особенности, их удельными (отнесенными к плотности) значениями, обладают направленно-армированные композиты. К ним относятся углепластики (УП), получаемые послойным формованием препрегов на термореактивном полимерном связующем волокнистых Уникальные деформационно-прочностные свойства и широкие технологические возможности получения равнопрочных конструкций делают указанные композиты незаменимыми при создании ответственных изделий аэрокосмического назначения, где требуется высокая жесткость и формостабильность, статическая, усталостная и ударная прочность, а также способность длительного надежного функционирования в экстремальных условиях эксплуатации. Но такие возможности реализуются лишь при оптимальном выборе наполнителя в виде углеродных волокон (тканей) и связующего, схем армирования и соответствующих технологических режимов формования с учетом мест» направленно-армированных материалов известных «слабых межслоевой прочности и выраженной неравномерности передачи напряжений от армирующих волокон к матричному материалу [3] (аналогичная проблема имеет место при сдвиговом нагружении клеевых соединений композитных элементов конструкций).

Таким образом, для реализации рекордной прочности направленно-армированных углепластиков КМ необходимы систематические научные исследования, направленные на определение параметров процесса разрушения, включая определение сдвиговой прочности, что являлось целью настоящей работы.

Материалы и методы исследования. С учетом рекомендаций существующих стандартов [4-7], исследование сдвиговой прочности углепластиков, отличающихся объемным соотношением наполнителя и связующего, производилось в условиях растяжения по ГОСТ 14759, 25717 и трехточечного изгиба (ГОСТ 32659) (рисунок 1).

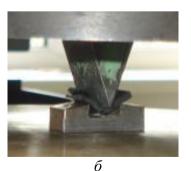


Рис. 1. Размещение образца в захватах машины для механических испытаний.

При испытании на растяжение использовались образцы в виде пластин ступенчатой формы (рисунок 1a) размерами $1,0\times20,0\times160,0$ мм (УП 34, УП 35) и

 $2,0\times20,0\times160,0$ мм (УП 41) с длиной ожидаемой зоны разрушения, равной 20 мм. Для испытаний углепластиков УП 48 и УП 49 на трехточечный изгиб (рисунок 16) применялись короткие пластины размером $2,0\times10,0\times20,0$ мм. Статическое нагружение на машине Инстрон 5567 (ИММС НАН Беларуси) производилось со скоростью 0,5 мм/мин. Для надежной фиксации в захватах машины при испытании на растяжение на пластины наклеивались накладки из ортогонально армированного углепластика с усилением получаемых адгезионных соединений двумя штифтами, выполненными также из углепластика.

Результаты и их обсуждение. Результаты испытаний образцов углепластиков УП 34, 35, 41 в виде фотографий поверхности разрушения и диаграмм деформирования показаны на рисунках 2 и 3 соответственно.

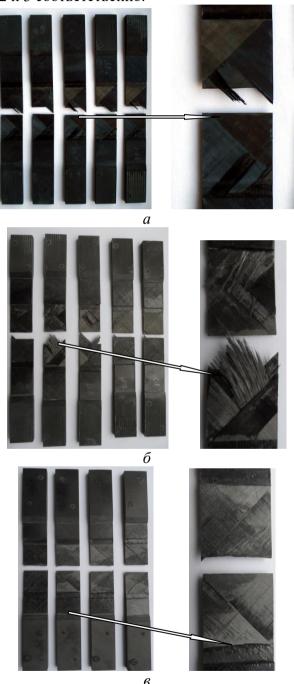


Рис. 2. Поверхность разрушения УП 34 (а), УП 35 (б), УП 41 (в)

Фрактографический анализ свидетельствует, что в зависимости от объемного содержания связующего меняется характер разрушения композита. В частности,

материал УП 34 расслаивается по плоскостям армирования (рис. 2a), а при разрушении углепластика УП 35 наряду с расслаиванием в ряде случаев наблюдается фрагментация на уровне волокон (рис. 2б). Образец материала УП 41 разрушается в плоскости поперечного сечения без расслаивания (рис. 2в).

Эти особенности проявляются при рассмотрении диаграмм растяжения исследованных углепластиков (рисунок 3), что выражается в нелинейности кривой «напряжение — деформация» и появлении характерных пиков напряжения при деформировании материала УПЗ4 (рисунок 3б). Можно отметить хорошую повторяемость результатов и весьма высокие значения прочности изучаемых материалов.

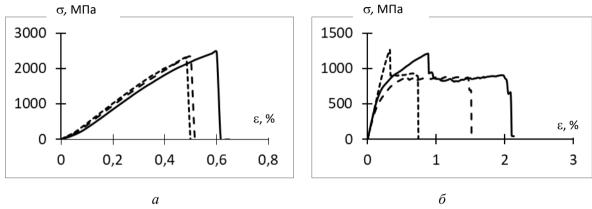


Рис. 3. Зависимости «напряжение – деформация» при растяжении УП 34 (а), УП 35 (б)

Характеристики сдвиговой прочности углепластика УП № 41 показаны в таблице 2.1, где напряжение σ_a соответствует появлению акустических предвестников разрушения (щелчков), причиной которых является частичное расслаивание материала, предшествующее полной потере несущей способности. Низкие значения разрушающего напряжения σ_p обусловлены относительно слабыми поперечными связями этого композитного материала.

Таблица $1 - \Gamma$ еометрические параметры образцов и механические характеристики при растяжении углепластика № 41

№	σ _p , ΜΠα	$\overline{\sigma}_{_{p}},$ МПа	s ₂ , МПа	σ _{пр} , МПа	$\overline{\sigma}_{np},$ M Π a	<i>s</i> ₃ , МПа	σ _a , МПа (акуст.)	¬ба, МПа	<i>s</i> 4, МПа
41.1	5,5	5,63	0,22	4,0	3,88	1,03	4,3	4,63	0,50
41.2	5,7			2,5			4,1		
41.3	5,9			4,0			5,1		
41.4	5,4			5,0			5,0		

Определение деформационно-прочностных характеристик углепластиков при межслоевом сдвиге в условиях трехточечного изгиба. В связи с методическими трудностями испытания материалов при растяжении в поперечном направлении, в том числе возможностью повреждения образцов при фиксации в клиновых захватах, отмеченными авторами в [8,9], деформационно-прочностные характеристики направленно-армированных углепластиков при межслоевом сдвиге целесообразно определять по ГОСТ 32659 в условиях трехточечного изгиба на коротких образцах, показанных на рисунке 4 и 5. В ходе таких испытаний было установлено, что образцы 48а и 49а расслаиваются на несколько пластинок (рисунок 4а,в), а образцы серий 48в и 49в претерпевают излом с разделением по длине на 2 равные части (рисунок 4б,г).

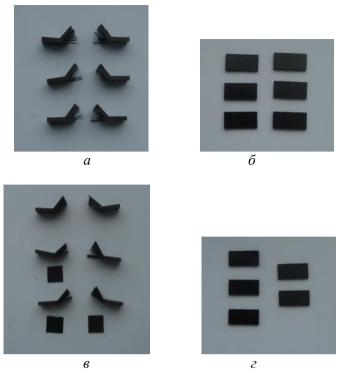


Рис. 4. Характер разрушения образцов № 48 (а, б) и № 49 (в, г) при испытании на изгиб при продольном (а, в) и поперечным расположении волокон (б, г)

Рис. 5. Зависимость $F(\Delta)$ для образцов углепластика 48 (a, δ) и 49 (b, ϵ) при направлении нагружающего клина поперек (a, b) и вдоль волокон) (δ, ϵ)

Таблица 2 – Геометрические параметры образцов и сдвиговая прочность материала УП 48 при нагружении по схеме трехточечного изгиба

№	<i>b</i> , мм	h, mm	<i>F</i> , H	τ, МПа	$ar{\sigma}_{np}$, МПа	<i>s</i> ₃ , МПа	
48a.1	10,10	2,25	1132	37,36			
48a.2	10,10	2,25	1052	34,72		1,39	
48a.3	10,00	2,05	959	35,09	25.00		
48a.4	10,10	2,30	1032	33,32	35,22		
48a.5	10,10	2,30	1120	36,16			
48a.6	10,10	2,30	1074	34,67			
48в.1	10,00	2,10	104	3,71		0,46	
48в.2	10,00	2,25	124	4,13			
48в.3	10,00	2,25	_	_	2.77		
48в.4	10,00	2,20	93	3,17	3,77		
48в.5	10,00	2,10	121	4,32			
48в.6	10,00	1,95	92	3,54			

Таблица 3 — Геометрические параметры образцов и сдвиговая прочность материала УП 49 при нагружении по схеме трехточечного изгиба

No	b, mm	h, mm	<i>F</i> , H	τ, МПа	$\overline{\sigma}_{np}$, M Π a	<i>s</i> ₃ , МПа
49a.1	10,00	1,90	1324	52,26		
49a.2	10,00	1,95	1299	49,96		2,45
49a.3	10,00	1,90	1423	56,17	52,37	
49a.4	10,00	1,90	1303	51,43	32,37	
49a.5	10,00	2,00	1336	50,10		
49a.6	10,00	2,00	1448	54,30		
49в.1	9,90	2,05	186	6,87		
49в.2	9,90	2,05	211	7,80		
49в.3	9,90	2,05	198	7,32	7,31	0,46
49в.4	9,90	2,00	180	6,82		
49в.5	9,90	2,05	209	7,72		

Результаты испытаний характеризуются хорошей повторяемостью и позволяют определить кажущийся предел прочности при межслоевом сдвиге образцов серий 48a и 49a (35,22/52,37 МПа) и 48в и 49в (3,77/7,31 МПа) соответственно.

Можно заметить сходный характер начальных участков диаграмм нагружения $F(\Delta)$ углепластика УП 48 при продольном и поперечном расположении нагружающего клина, как показано на рисунках 5а, 5б. Но в первом случае после достижения максимума наблюдается плавное снижение изгибающей нагрузки, обусловленное эффектом живучести материала вследствие перераспределения нагрузки между волокнами в процессе разрушения в соответствии с рисунком 5а. При ориентации линии клина в направлении волокон прочность однонаправленного углепластика на порядок меньше из-за низкой прочности слабых поперечных связей между волокнами,

причем исчерпание несущей способности происходит весьма быстро, так как перераспределение нагрузки между волокнами не происходит (рисунок 56, 5г).

Заключение

Для обоснованного использования высокопрочных направленно-армированных материалов в ответственных технических приложениях актуально определение их прочностных характеристик при межслоевом сдвиге.

Стандартизованными методами механических испытаний исследованы сдвиговые деформационно-прочностные свойства направленно-армированных углепластиков. Проанализированы диаграммы деформирования и особенности разрушения, определены прочностные характеристики указанных композиционных материалов при слвиге.

Работа выполнена в рамках проекта Т18КОРГ-2018.

ЛИТЕРАТУРА

- 1. Композиционные материалы. Справочник / Под ред. Д.М. Карпиноса. Киев, 1985. 588 с.
- 2. Берлин А.А. Баженов С.Л., Кульков А.А., Ошмян В.Г. Полимерные композиционные материалы. Прочность и технология / Долгопрудный: Изд. дом «Интеллект», 2009. 352 с.
- 3. Композиционные материалы: В 8 т. Пер с англ. / под. ред. Л. Браутмана, Р. Крока. М.: Машиностроение, 1978. Т. 6: Поверхности раздела полимерных композитов / под ред. Е.П. Плюдемана. 295 с.
- 4. Шах В. Справочное руководство по испытаниям пластмасс и анализу причин их разрушения / Пер. с англ. под ред. Малкина А.Я. СПб: Научные основы и технологии, 2009. 732 с.
- 5. ГОСТ 32659-2014 Композиты полимерные. Методы испытаний. Определение кажущегося предела прочности при межслойном сдвиге методом испытания короткой балки.
- 6. ГОСТ 14759-69. Клеи. Метод определения прочности при сдвиге.
- 7. ГОСТ 25717-83. Клеи. Методы определения модуля сдвига клея в клеевом соединении.
- 8. Шилько С.В., Рябченко Т.В., Ермолкевич И.В., Романович С.И., Федосенко Н.Н. Аттестация физико-механических свойств направленно-армированных полимерных композитов для элементов конструкций, эксплуатируемых в экстремальных условиях // Актуальные вопросы машиноведения: Сб. научн. тр. ОИМ. Минск, 2017. Вып. 6. С. 329–333.
- 9. Шилько С.В., Рябченко Т.В., Романович С.И., Сhoe Heeman, Федосенко Н.Н. Методические особенности испытаний высокопрочных направленно-армированных полимерных композитов для экстремальных условий эксплуатации // Актуальные вопросы машиноведения. 2018. Вып. 7. С. 88—93.