

Рисунок 6 – Восстановление матрицы

Сохраняем в файл с названием «stego.bmp»:



Рисунок 7 – QR-код со стего

Попробуем считать QR-код с помощью приложения на смартфоне:



Рисунок 8 - Сообщение

Как мы видим, стегосообщение никак не повлияло на содержание записанного в QR-код сообщения и успешно скрыто.

УДК 539.3

Восстановим стего: разбиваем матрицу на блоки размерности N:

Blocks2 := fragmentation(qr\_stego) Применяем прямое ДКП и определяем ключ:

$$\Omega 2 := \text{Right}_DCT(\text{Blocks2})$$
  
B2D(x) :=  $\sum_{i=1}^{N-1} (x_i \cdot 2^i)$ 

i = 0 Восстанавливаем стего:

```
stego := j \leftarrow 0

for k \in 0... strien(Message) - 1

\begin{bmatrix} for i \in 0..N - 1 \\ & \Pi r \leftarrow \Omega 2_j \\ & \omega_1 \leftarrow \left| \Omega r(\upsilon_1, \nu_1) \right| \\ & \omega_2 \leftarrow \left| \Omega r(\upsilon_2, \nu_2) \right| \\ & m_i \leftarrow 0 \text{ if } \omega_1 > \omega_2 \\ & m_i \leftarrow 1 \text{ if } \omega_1 < \omega_2 \\ & j \leftarrow j + 1 \\ & stego_k \leftarrow B2D(m) \\ & m \leftarrow 0 \\ & stego \end{bmatrix}
```

Рисунок 9 - Стего восстановление

Как мы видим, стегосообщение удачно восстановлено.

В данной статье были изучены возможности применения стегозаписи в контейнер в виде QRкода для хранения ключей, либо персональных данных и написана программа, реализующая занесение текстового стего в QR-код.

В ходе экспериментов стегосообщение было успешно скрыто от расшифровки сканером QR-кода и успешно восстановлено по ключу.

## Литература

1. Ковалёв А.И. QR-коды, их свойства и применение // Молодой ученый. – 2016. – № 10. – С. 56– 59. – URL https://moluch.ru/archive/114/ 29398/ (дата обращения: 20.09.2018).

2. Грибунин В.Г., Оков И.Н., Туринцев И.В. Цифровая стеганография. Москва, СОЛОН-Пресс, 2002, 272 с.

# ИЗГИБ УПРУГОПЛАСТИЧЕСКОЙ КРУГОВОЙ ТРЁХСЛОЙНОЙ ПЛАСТИНЫ НА СЛОЖНОМ ОСНОВАНИИ Козел А.Г.

Белорусский государственный университет транспорта, Гомель, Беларусь

В настоящее время использование трёхслойных конструкций в машино- и приборостроении повлекло за собой интенсивную разработку теорий и методов их расчёта. Деформирование круговых трехслойных пластин в настоящее время изучено, в основном, при опирании на однопараметрическое основание Винклера.

Модель упругого основания с использованием двух коэффициентов постели, учитывающая его сжимаемость и связность, была впервые использована П.Л. Пастернаком [1] при взаимодействии с однородными элементами конструкций. Деформирование несимметричных по толщине упругих трёхслойных пластин на основании Пастернака исследовалось в работах [2, 3].

Здесь приведены постановки краевой задачи в усилиях и перемещениях упругопластической трёхслойной пластины, связанной со сложным двухпараметрическим основанием. В тонких несущих слоях принимаются гипотезы Кирхгофа, в несжимаемом по толщине заполнителе нормаль остается прямолинейной, не изменяет своей длины, но поворачивается на некоторый дополнительный угол  $\Psi$ , тангенциальные перемещения линейно распределены по толщине, не учитывается работа касательных напряжений.

Постановка задачи и ее решение проводятся в цилиндрической системе координат r,  $\varphi$ , z. Внешняя вертикальная нагрузка не зависит от координаты  $\varphi$ :  $q_0 = q_0(r)$ . На контуре пластины предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев. На нижнюю поверхность пластины действует распределенная по ее площади реакция основания  $q_R$ , которую принимаем в соответствии с моделью Пастернака [1]:

$$q_R(r) = -\kappa_0 w + t_f \Delta w$$
,

где  $\kappa_0, t_f$  – коэффициенты сжатия и сдвига,  $\Delta$  – оператор Лапласа.

В силу симметрии нагрузки тангенциальные перемещения в слоях отсутствуют:  $u_{\phi}^{(k)} = 0$ (k=1,2,3- номер слоя), а прогиб пластины, относительный сдвиг в заполнителе и радиальное перемещение координатной плоскости не зависят от координаты  $\varphi$ , т. е. w(r),  $\psi(r)$ , u(r). В дальнейшем эти функции считаются искомыми. Через  $h_k$  обозначена толщина k-го слоя.

Используя гипотезу прямолинейности нормали заполнителя  $2\varepsilon_{rz}^{(3)} = u_r^{(3)}, + w_r = \psi$ , после интегрирования получим выражения радиальных перемещений в слоях  $u_r^k$  через искомые функции:

$$u_{r}^{(1)} = u + c\psi - zw_{r} \quad (c \le z \le c + h_{1}),$$
  

$$u_{r}^{(3)} = u + z\psi - zw_{r} \quad (-c \le z \le c),$$
  

$$u_{r}^{(2)} = u - c\psi - zw_{r} \quad (-c - h_{2} \le z \le -c),$$

где  $(u+c\psi)$  – величина смещения внешнего несущего слоя за счет деформации заполнителя, для второго несущего слоя это смещение  $(u-c\psi)$ , z – координата рассматриваемого волокна, запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате.

Деформации в слоях имеем в виде

$$\varepsilon_r^{(1)} = u_{,r} + c \psi_{,r} - z w_{,rr} , \ \varepsilon_{\phi}^{(1)} = \frac{1}{r} (u + c \psi - z w_{,r}) , \ \varepsilon_{rz}^{(1)} = 0$$

$$\varepsilon_r^{(2)} = u_{,r} - c\psi_{,r} - zw_{,rr}, \ \varepsilon_{\varphi}^{(2)} = \frac{1}{r}(u - c\psi - zw_{,r}), \ \varepsilon_{rz}^{(2)} = 0$$

$$\varepsilon_r^{(3)} = u_{,r} + z\psi_{,r} - zw_{,rr}, \ \varepsilon_{\phi}^{(3)} = \frac{1}{r}(u + z\psi - zw_{,r}), \ \varepsilon_{rz}^{(3)} = \frac{1}{2}\psi.$$

Предположим, что материалы несущих слоев в процессе деформирования могут проявлять упругопластические свойства, заполнитель – нелинейно упругие. Для их описания используем соотношения теории малых упругопластических деформаций:

$$s_{\alpha}^{(k)} = 2G_k(1-\omega_k(\varepsilon_u^{(k)}))\mathfrak{g}_{\alpha}^{(k)}$$
,  $\sigma^{(k)} = 3K_k\varepsilon^{(k)}$ ,  
 $s_{rz}^{(3)} = 2G_3\mathfrak{g}_{rz}^{(3)}(1-\omega_3(\varepsilon_u^{(3)}))$ ,  $(k=1,2,3, \alpha=r, \varphi)$ ,  
где  $s_{\alpha}^{(k)}$ ,  $\mathfrak{g}_{\alpha}^{(k)}$ ,  $\sigma^{(k)}$ ,  $\varepsilon^{(k)}$  – девиаторные и шаровые  
части тензоров напряжений и деформаций;  $G_k$ ,  
 $K_k$  – модули сдвиговой и объёмной деформации  
*k*-го слоя;  $\omega_k(\varepsilon_u^{(k)})$  – функции пластичности ма-

*k*-го слоя;  $\omega_k(\varepsilon_u^{(k)}) - \phi$ ункции пластичности материалов несущих слоев, которые в случае  $\varepsilon_u^{(k)} \leq \varepsilon_y^{(k)}$  следует положить равными нулю;  $\varepsilon_u^{(k)} -$ интенсивность деформаций в *k*-м слое (*k*=1, 2),  $\varepsilon_y^{(k)} -$ деформационный предел текучести материалов несущих слоёв;  $s_{rz}^{(3)}$ ,  $g_{rz}^{(3)} -$ касательное напряжение и угловая деформация в заполнитезаполнителе;  $\omega_3(\varepsilon_u^{(3)}) -$ универсальная функция, описывающая физическую нелинейность заполнителя, причём  $\omega_3 \equiv 0$  при  $\varepsilon_u^{(3)} \leq \varepsilon_s^{(3)}$ ;  $\varepsilon_s^{(3)} -$ предел физической нелинейности материала заполнителя.

Используя компоненты тензора напряжений  $\sigma_{\alpha}^{(k)}(\alpha = r, \phi)$ , введем обобщенные внутренние силы и моменты в пластине:

$$\begin{split} T_{\alpha} &\equiv \sum_{k=1}^{3} T_{\alpha}^{(k)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha}^{(k)} dz , \\ M_{\alpha} &\equiv \sum_{k=1}^{3} M_{\alpha}^{(k)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha}^{(k)} z dz , \\ H_{\alpha} &= M_{\alpha}^{(3)} + c \Big( T_{\alpha}^{(1)} - T_{\alpha}^{(2)} \Big) . \end{split}$$

Компоненты тензора напряжений в слоях, представим через девиаторную и шаровую части тензора деформаций, выделив упругие (индекс «е») и неупругие (индекс «о») слагаемые:

$$\begin{aligned} \sigma_{\alpha}^{(k)} &= \sigma_{\alpha e}^{(k)} - \sigma_{\alpha \omega}^{(k)}, \ (\alpha = r, \varphi; \ k = 1, 2, 3), \\ \sigma_{rz}^{(3)} &= \sigma_{rze}^{(3)} - \sigma_{rz\omega}^{(3)}, \end{aligned}$$

где

$$\sigma_{\alpha e}^{(k)} = 2G_k \vartheta_{\alpha}^{(k)} + K_k \theta^{(k)} , \quad \sigma_{\alpha \omega}^{(k)} = 2G_k \omega_k \vartheta_{\alpha}^{(k)} ,$$

 $\sigma^{(3)}_{\scriptscriptstyle rze} = 2G_3 \vartheta^{(3)}_{\scriptscriptstyle rz} \,, \ \ \sigma^{(3)}_{\scriptscriptstyle rz\omega} = 2G_3 \omega_3 \vartheta^{(3)}_{\scriptscriptstyle rz} \,.$ 

Обобщённые внутренние усилия, с учётом замены напряжения  $\sigma_{\alpha}^{(k)}$  соответственно на  $\sigma_{\alpha e}^{(k)}$ ,  $\sigma_{\alpha \phi}^{(k)}$ , будут следующими:

$$\begin{split} T_{\alpha} &= T_{\alpha e} - T_{\alpha \omega} = \sum_{k=1}^{3} T_{\alpha e}^{(k)} - \sum_{k=1}^{3} T_{\alpha \omega}^{(k)} ,\\ M_{\alpha} &= M_{\alpha e} - M_{\alpha \omega} = \sum_{k=1}^{3} M_{\alpha e}^{(k)} - \sum_{k=1}^{3} M_{\alpha \omega}^{(k)} ,\\ H_{a e} &= M_{\alpha e}^{(3)} + c \left( T_{\alpha e}^{(1)} - T_{\alpha e}^{(2)} \right),\\ H_{\alpha \omega} &= M_{\alpha \omega}^{(3)} + c \left( T_{\alpha \omega}^{(1)} - T_{\alpha \omega}^{(2)} \right). \end{split}$$

Система дифференциальных уравнений равновесия в усилиях, описывающая деформирование круговой упругой трехслойной пластины на упругом основании была получена с помощью принципа Лагранжа в [2]. Поэтому ее можно применить и здесь как исходную:

$$T_{r},_{r} + \frac{1}{r}(T_{r} - T_{\phi}) = 0, \quad H_{r},_{r} + \frac{1}{r}(H_{r} - H_{\phi}) = 0$$
$$M_{r},_{rr} + \frac{1}{r}(2M_{r},_{r} - M_{\phi},_{r}) = -(q_{0} - q_{R}).$$

Выделяя в обобщенных внутренних усилиях линейные и нелинейные составляющие, получим их в виде:

$$T_{r},_{r} + \frac{1}{r}(T_{r} - T_{\varphi}) = p_{\omega}, \quad H_{r},_{r} + \frac{1}{r}(H_{r} - H_{\varphi}) = h_{\omega},$$
$$M_{r},_{rr} + \frac{1}{r}(2M_{r},_{r} - M_{\varphi},_{r}) = -q_{0} + q_{R} + q_{\omega}.$$

Здесь в левой части уравнений собраны линейные составляющие обобщённых внутренних усилий, причем нижний индекс «е» в дальнейшем опущен для удобства. Нелинейные добавки сосредоточены справа и включены в слагаемое с нижним индексом «  $\omega$  »:

$$p_{\omega} = T_{r\omega}, + \frac{1}{r}(T_{r\omega} - T_{\varphi\omega}),$$
$$h_{\omega} = H_{r\omega}, + \frac{1}{r}(H_{r\omega} - H_{\varphi\omega}),$$
$$q_{\omega} = M_{r\omega}, + \frac{1}{r}(2M_{r\omega}, -M_{\varphi\omega}),$$

Граничные условия в усилиях замыкают постановку задачи теории малых упругопластических деформаций:

$$\begin{split} T_r &= T_r^1 + T_{\omega}, \ H_r = H_r^1 + H_{\omega}, \ M_r = M_r^1 + M_{\omega}, \\ M_r, + \frac{1}{r} (M_r - M_{\varphi}) = Q^1 + M_{r\omega}, + \frac{1}{r} (M_{r\omega} - M_{\varphi\omega}). \end{split}$$

Линейные (упругие) составляющие обобщенных внутренних усилий по-прежнему выражаются через перемещения по формулам приведенным в [2], поэтому система дифференциальных уравнений равновесия будет иметь вид:

$$\begin{split} L_{2}(a_{1}u + a_{2}\psi - a_{3}w, r) &= p_{\omega}, \\ L_{2}(a_{2}u + a_{4}\psi - a_{5}w, r) &= h_{\omega}, \\ L_{3}(a_{3}u + a_{5}\psi - a_{6}w, r) - \kappa_{0}w + t_{f}\Delta w &= -q_{0} + q_{\omega} \end{split}$$

 $a_i$  — коэффициенты, учитывающие упругие и геометрические параметры слоев,  $L_k$  — линейные дифференциальные операторы [3].

Краевая задача по определению прогиба круглой упругопластической пластины на основании Пастернака замыкается присоединением граничных условий.

$$u = \psi = w = w, = 0$$
 при  $r = R$ .

При шарнирном опирании контура пластины  $u = \psi = w = 0$ ,  $M_r = 0$  при r = R.

В случае свободного контура пластины  $\psi = 0$  ,  $T_r = M_r = M_{r,r} = 0$  .

Работа выполнена при финансовой поддержке БР ФФИ (проект № Т18Р-090).

# Литература

1 Пастернак, П.Л. Основы нового метода расчёта фундаментов на упругом основании при помощи двух коэффициентов постели. М. : Гос. изд-во литературы по строительству и архитектуре, 1954. – 55 с.

2 Козел, А.Г. Перемещения в круговой трехслойной пластине на двухпараметрическом основании / А.Г. Козел // Механика. Исследования и инновации, 2017. – Вып. 10. – С. 90–95.

3 Козел, А.Г. Деформирование круговой трехслойной пластины, защемленной по контуру, на основании Пастернака / А.Г. Козел // Теоретическая и прикладная механика. – Минск : БНТУ, 2018. – № 33. – С. 318–322.

## УДК 544.64:544.032.4 ИССЛЕДОВАНИЕ РАДИАЦИОННОЙ СТОЙКОСТИ НИТРИДНЫХ КЕРАМИК Козловский А.Л., Гладких Т.М., Здоровец М.В.

#### Евразийский национальный университет им. Л.Н. Гумилева, Астана, Казахстан

Нитрид алюминия (AlN) является керамическим материалом, который обладает чрезвычайно интересным сочетанием высокой теплопроводности и отличных изоляционных свойств, благодаря которым обусловлено широкое применение AlN в энергетике, ядерной промышленности, конструкционных материалах и микроэлектронике. Например, он используется при изготовлении печатных плат (подложки) в полупроводниках или в качестве теплопоглотителя в светодиодной осве-