УДК 621.791.725+621.791.754:519.23

Исследование влияния технологических факторов при лазерной сварке и ее комбинации со сваркой ТИГ среднеуглеродистой легированной стали системы Fe-Cr-Mn-Si

 I Голубцова Е. С., 2 Каледина Н. Б. I Белорусский национальный технический университет 2 Белорусский государственный технологический университет

Для оптимизации погонного расхода электроэнергии $P/v_{\rm cB}(y_1)$ и погонной энергии сварки $q/v_{\rm cB}(y_2)$ при сварке стыковых соединений среднеуглеродистой стали толщиной 3; 6 и 10,4 мм системы Fe-Cr-Mn-Si способами лазерной сварки лазером Nd: YAG мощностью до 4;4 кВт и ее комбинации со сваркой ТИГ использован план эксперимента 2×3 , где 2- два кодированных уровня сварки $(x_1=-1)$ и способа сварки $(x_1=+1)$, 3- три кодированных уровня толщины свариваемой стали $(x_2=-1,-3)$ мм; $x_2=0,-5$ мм; $x_2=+1,-9$ мм), а y_1 и y_2- параметры оптимизации — погонный расхода электроэнергии и погонная энергии сварки соответственно. Ошибки экспериментов соответственно составляли: $S_1=0,00367$ (5% от среднего значения y_1); $S_2=0,046$ (5% от среднего значения y_2). После обработки результатов эксперимента получены следующие уравнения регрессии:

$$y_1 = \frac{P}{v_{ce}} = 0,058 - 0,05x_1 + 0,05x_2 - 0,064x_1x_2 + 0,024x_2^2;$$

$$y_2 = \frac{q}{v_{ce}} = 0,756 + 0,0466x_1 + 0,806x_2 + 0,339x_1x_2 + 0,249x_2^2.$$

Анализ выведенных уравнений показывает, что наибольшее влияние на оба оптимизируемых параметра y_1 и y_2 оказывает толщина свариваемого металла (x_2) . Минимальное значение $y_1=0,015$ кВт·ч/м будет при $x_1=+1$ (лазерная сварка+ТИГ) и $x_2=0$ (6 мм). Минимальная величина параметра y_2 будет при $x_1=-1$ (лазерная сварка при 4,4 кВт) и $x_2=-1$ (толщина 3 мм), $y_{max}=2,615$ будет при $x_1=+1$ и $x_2=+1$, т.е. при толщине свариваемой пластины 9 мм (лазерная сварка+ТИГ).