ИСПОЛЬЗОВАНИЕ РЕЛЯЦИОННЫХ БАЗ ЦДФЭ ПРИ ИЗУЧЕНИИ ЭНЕРГЕТИЧЕСКИХ УСЛОВИЙ *а*-РАСПАДА

Парахневич А.С., Дерюжкова О.М.

УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь, <u>alina6970768@mail.ru</u>, <u>dom@gsu.by</u>

Воспользуемся веб-сайтом Центра данных фотоядерных экспериментов (ЦДФЭ) НИИ ядерной физики им. Д.В. Скобельцына МГУ им. М.В. Ломоносова (НИИЯФ МГУ) с целью извлечения необходимых сведений по основным свойствам и характеристикам α -распада. Сайт представляет собой систему реляционных баз ядерных данных (БД) и содержит обширную информацию по ядерным реакциям под действием различных частиц, а также данные о свойствах атомных ядер и их структуре (энергетических уровнях, альфа-, бета-, гамма-переходах). Применение БД в исследованиях упрощает процесс обработки информации и улучшает восприятие полученного результата, предоставляя графическую интерпретацию [1].

Изучение процессов α -распада ядер является одним из самых информативных методов исследования ядерной структуры. Ядерные реакции, а значит и α -распад, используют с целью получения новых изотопов, а также информации о свойствах и характеристиках уже известных ядер. Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у радия-226 или урана-238, α -радиоактивные ядра в таблице нуклидов появляются начиная с атомного номера Z=52 (теллур) и массового числа A около 106–110, а при атомном номере Z>82 и массовом числе A>200 практически все нуклиды α -радиоактивны. Среди природных изотопов α -радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория [2]. В настоящее время известно более 300 α -активных ядер, большинство из них получено искусственным путем.

Явление α -распада состоит в самопроизвольном испускании ядром α -частицы или ядра гелия $_2He^4$:

$$_{Z}X^{A} \rightarrow _{Z-2}X^{A-4} + _{2}He^{4},$$

где_Z X^{A} – материнское ядро или исходное; $_{Z-2}X^{A-4}$ – дочернее ядро или образовавшееся в результате распада.

Рассмотрим баланс энергий при α -распаде. Радиоактивность – экзотермический процесс (Q>0), т.е. при α -распаде энергия должна выделяться. Следовательно, чтобы α -распад происходил, необходимо, чтобы энергия связи материнского ядра была меньше суммы энергий связи дочернего ядра и α -частицы, то есть энергия Q, выделяющаяся при α -распаде равна

$$Q = E_{c_{6}}(Z - 2, A - 4) + E_{c_{6}}(\alpha) - E_{c_{6}}(Z, A) = E_{c_{6,\alpha}} + E_{c_{6,\alpha}} - E_{c_{6,M}} > 0.$$
(1)

В основном Q есть кинетическая энергия α -частицы образующейся в результате распада. Так как $M_{\alpha} >> M_{\alpha}$, то

$$Q \approx T_a$$
. (2)

Используя (1) и (2) получим условие, при котором возможен α -распад. Для этого от энергии связи перейдем к удельным энергиям связи: $\varepsilon_{cs} = \frac{E_{cs}}{A}, E_{cs} = A\varepsilon_{cs}$.

Тогда формула (1) примет вид:

$$T_{\alpha} = (A-4)\varepsilon_{c_{6.0.}} + 4\varepsilon_{c_{6.\alpha}} - A\varepsilon_{c_{6.M}} > 0,$$

$$A(\varepsilon_{c_{6.0.}} - \varepsilon_{c_{6.M}}) > 4(\varepsilon_{c_{6.0.}} - \varepsilon_{c_{6.\alpha}}),$$

$$\varepsilon_{c_{6.0.}} - \varepsilon_{c_{6.M}} > \frac{4}{A}(\varepsilon_{c_{6.0.}} - \varepsilon_{c_{6.\alpha}}).$$
(3)

Из (3) видно, что энергия связи дочернего ядра больше энергии связи материнского ядра, то есть каждый нуклон в дочернем ядре должен быть в среднем связан более прочно, чем в материнском:

$$\mathcal{E}_{_{CB.\partial.}} > \mathcal{E}_{_{CB.M}}$$

С увеличением числа нуклонов A, удельная энергия связи \mathcal{E}_{ce} должна быстро убывать. Это происходит вследствие того, что с возрастанием Z увеличивается относительная роль кулоновского отталкивания, уменьшающего энергию связи ядра.

Продемонстрируем как численные значения, полученные с помощью калькулятора «Энергии распадов» БД ЦДФЭ НИИЯФ МГУ, подтверждают экспериментальные данные и согласуются с расчетными данными относительно области ядер, для которых наблюдается α -распад. Для этого оценим работу калькулятора по извлечению информации о легких (изотопы алюминия $_{13}Al$), редкоземельных (изотопы самария $_{62}Sm$) и тяжелых (изотопы полония $_{84}Po$) ядрах. Выясним, вначале, возможен ли α -распада для изотопов алюминия $_{13}Al$. Для этого согласно отработанной методике заполним входную форму запроса (рисунок 1).

3. Энергии распадов

Рисунок 1 – Входная форма запроса калькулятора «Энергии распадов» для определения энергии α-распада изотопов алюминия ₁₃Al

Выходная форма запроса не формируется. Калькулятор устроен таким образом, что не вычисляет выходные данные и не строит график зависимости энергии распада от полного числа нуклонов A для изотопов $_{13}Al$, поскольку они относятся к группе легких элементов, для которых α -распад не возможен из-за слишком больших периодов полураспада $T_{1/2}$.

Извлечем теперь информацию о возможных α -распадах изотопов самария ₆₂Sm Z=62. Введем необходимые входные параметры на форму запроса калькулятора «Энергии распадов» (рисунок 2,а).

		Elem	Z	N	A	Οα	06-	06+	0ε
		Sm	62	66	128	3.0750		7.9780	9,0000
		Sm	62	67	129	2.8750		9.5780	10.6000
		Sm	62	68	130	2.8750		6.8780	7.9000
	3. Энергии распадов	Sm	62	69	131	2.7750	-	8.5180	9.5400
		Sm	62	70	132	2.5550	-	5.4880	6.5100
Энергии распадов рассчитаны н	а основании значений атомных масс по следующим формулам.	Sm	62	71	133	2.6750	1	7.2580	8.2800
Каждое поле формы может быть	ы пустым. [Помощь]	Sm	62	72	134	2.6650		4.2080	5.2300
		Sm	62	73	135	2.4850	- E	6.0980	7.1200
	Sm	62	74	136	2.1900		3.3670	4.3890	
		Sm	62	75	137	1.8750	_	5.0200	6.0420
Z:	62 Пример: 20, 40-60	Sm	62	76	138	1.7230	_	2.4200	3.4420
		Sm	62	77	139	1.4080	_	4.0940	5.1160
N:	·	Sm	62	78	140	1.3190	_	1.7330	2.7550
	Пример: 20, 40-60		62	79	141	1.2160	_	3.5620	4.5840
		Sm	62	80	142	0.6000	-	1.1450	2.1670
A:	Пример: 20, 40-60	Sm	62	81	143	0.0420	_	2.4210	3.4430
		Sm	62	83	145	1.1150	_	_	0.6160
		Sm	62	84	146	2.5280	_	_	_
	⊠ α (альфа-распад)	Sm	62	85	147	2.3103	_	_	_
Тип распада:	✓ β ⁻ (бета-распад)	Sm	62	86	148	1.9860	-	_	_
	🗹 β ⁺ (позитронный бета-распад)	Sm	62	87	149	1.8701	-	_	_
	є (электронный захват)	Sm	62	88	150	1.4487	_	_	-
			62	89	151	1.1449	0.0770	_	_
На оси абслисс:	OZON © A		62	90	152	0.2200	_	_	_
		Sm	62	91	153	_	0.8080	_	_
		Sm	62	93	155	_	1.6275	_	_
Вычислить	Sm	62	94	156	_	0.7230		_	
				95	157	_	2.7370	_	_
		Sm	62	96	158		2.0000	_	_
		Sm	62	97	159	-	3.8430		-
		Sm	62	98	160	-	2.9500	-	_
		Sm	62	99	161	-	4.8000	_	-
		Sm	62	100	162	-	3.8000	_	-
		Sm	62	101	163	-	5.7000		-
		Sm	62	102	164	-	4.9000		-
		Sm	62	103	165	_	6.8000		_
	9					б			
	u					~			

Result - Qa(A,Z), QB-(A,Z), QB+(A,Z), QE(A,Z):

Рисунок 2 – Входная и выходная формы запроса калькулятора «Энергии распадов» для определения энергии α-распада изотопов самария ₆₂Sm

В результате работы калькулятора формируется выходная форма запроса в виде таблицы данных (рисунок 2,6). На основе полученных результатов можно построить график зависимости энергии α -распада Q от полного числа нуклонов A (рисунок 3).

Рисунок 3 – График зависимости энергии распада *Q* от полного числа нуклонов *А* для изотопов самария ₆₂*Sm*

Из таблицы, представленной на рисунке 2,6 видно, что α -распаду подвержены 24 изотопа (A=128-152). Остальные 12 изотопов самария (A=153-165), перегруженные нейтронами, испытывают только β -распад. Таким образом, у ядер редкоземельных элементов α -распад подавляется β -распадом. Из графика рисунка 3 следует, что α -распад изотопов самария $_{62}Sm$ становится возможным, начиная с A=128. Резкий пик энергии распада в пределах области A=146 объясняется в оболочечной модели ядра и связан с заполнением нейтронной оболочки до магического числа нейтронов N=82.

Перейдем теперь в область тяжелых ядер и рассмотрим характеристики α-распада изотопов полония ₈₄*Po*. Заполним входную форму запроса (рисунок 4,а).

а

Elem	Z	N	A	Qa	Qß-	QB+	Qe	
6	84	104	188	8.0820	_	5.6400	6.6620	
6	84	105	189	7.7010	_	7.6230	8.6450	
6	84	106	190	7.6930	_	5.3150	6.3370	
6	84	107	191	7.5020	_	7.1650	8.1870	
6	84	108	192	7.3190		4.4570	5.4790	
6	84	109	193	7.0950		6.4900	7.5120	
0	84	110	194	6.9870		3.9630	4.9850	
0	84	111	195	6.7550		5.9310	6.9530	
0	84	112	196	6.6560		3.5130	4.5350	
0	84	113	197	6.4050		5.3060	6.3280	
0	84	114	198	6.3090	_	2.8750	3.8970	
0	84	115	199	6.0740	_	4.5620	5.5840	
0	84	116	200	5.9810	_	2.3940	3.4160	
0	84	117	201	5.8000	_	3.8690	4.8910	
0	84	118	202	5.7010	_	1.7860	2.8080	
0	84	119	203	5.4950	_	3.2080	4.2300	
0	84	120	204	5.4850	_	1.3150	2.3370	
0	84	121	205	5.3230	_	2.5310	3.5530	
0	84	122	206	5.3270	_	0.8240	1.8460	
0	84	123	207	5.2150	_	1.8860	2.9080	
0	84	124	208	5.2150	_	0.3790	1.4010	
0	84	125	209	4.9792	_	0.8701	1.8921	
0	84	126	210	5.4069	_	_	_	
0	84	127	211	7.5935	_	_	_	
0	84	128	212	8.9536	_	_	_	
0	84	129	213	8.5364	_	_	_	
0	84	130	214	7.8343	-	_	_	
0	84	131	215	7.5257	0.7147	_	_	
0	84	132	216	6.9054	_	_	_	
0	84	133	217	6.6600	1.5050	_	_	
0	84	134	218	6.1140	0.2600	_	_	
6	84	135	219	5.8750	2.4030	_	_	
6	84	136	220		1.1500			

Result - Qa(A,Z), Q\$-(A,Z), Q\$+(A,Z), Q\$(A,Z);

Рисунок 4 – Входная и выходная формы запроса калькулятора «Энергии распадов» для определения энергии α-распада изотопов полония ₈₄Po

В результате работы калькулятор выдает численные значения энергии α -распада в таблице выходной формы запроса (рисунок 4,6), из которой следует, что α -распаду подвержен 31 изотоп полония (A=188-219) и только 1 изотоп $_{84}Po^{220}$ не испытывает α -распад. Все это подтверждает экспериментальные данные и теоретические оценки области значений A и Z для α -распада: α -распад наблюдается в основном для тяжелых ядер.

На основе полученных данных можно построить график зависимости энергии α распада от полного числа нуклонов A (рисунок 5). Из рисунков 4,6 и 5 видно, что энергия α распада уменьшается с ростом числа нуклонов A изотопов полония достигая для ${}_{84}Po^{209}$ (N=125) минимального значения 4,9792 МэВ. Резкий всплеск энергии объясняется в оболочечной модели ядра наличием магического числа нейтронов N=126.

Рисунок 5 – График зависимости энергии распада *Q* от полного числа нуклонов *А* для изотопов полония ₈₄*Po*

Таким образом, с помощью баз данных можно значительно сократить время поиска необходимой информации и получить более точные результаты исследования свойств и характеристик того или иного ядра.

Список использованных источников

1. Центр данных фотоядерных экспериментов (ЦДФЭ) [Электронный ресурс] / Центр данных фотоядерных экспериментов (ЦДФЭ). – ЦДФЭ, 2003. – URL: <u>http://cdfe.sinp.msu.ru/index.ru.html.</u> – Дата доступа: 11.11.2018.

2. Википедия [Электронный ресурс] / Википедия. – 5 ноября 2018. – URL: <u>https://ru.wikipedia.org/wiki</u>. – Дата доступа: 13.11.2018.