
216

UDC 004.424

Using of fast unmanaged code in C# language to accelerate the processing

of images from unmanned aerial vehicle camera

Stepanov V. Y., Zuyonok A. V.

Belarusian National Technical University

It is known that different languages are based on completely different sets of

basic concepts. Programming languages (like C#) use a term such as a managed

context. This means that C# (more precisely CLR – Common Language

Runtime) should work with fixed-size data types, because the code can be com-

piled by a JIT (Just-in-time) compiler under any of the supported target plat-

forms (unless otherwise specified). There are a number of cases that govern the

use of an unmanaged context, for example, in situations where the performance

is critical (as in the case of processing images obtained from unmanned aerial

cameras) where the standard GetPixel (...) method of the Bitmap class is pro-

posed from the assembly System.Drawing (in System.Drawing.dll) to get the

brightness of one pixel of the image.

The situation is complicated by the fact that the call of this method must be

performed as many times as the number of pixels make our image. Taking into

account the resolution of modern cameras, it is necessary to call the GetPixel

(...) method more than one thousand times, which significantly reduces the

overall system performance. In this case it is convenient to use a combination of

managed code (for obtaining an image) and unmanaged code for organizing a

quick access operation to an image through a pointers mechanism. This interac-

tion is classified as an in-process and it is necessary to apply some operations

that by default C# programmers are unavailable; since it is considered that the

managed context is safer. For the interaction of managed with unmanaged code,

in which unmanaged libraries are connected to the managed application, there is

a Platform Invoke (p / Invoke) mechanism or in simple cases (for code) it is

sufficient to use the unsafe keyword. For example:

Bitmap bSrc = (Bitmap)sourceImage.Clone();

BitmapData bmData = sourceImage.LockBits (new Rectangle (0, 0,

sourceImage.Width, sourceImage.Height), ImageLockMode.ReadWrite, Sys-

tem.Drawing.Imaging.PixelFormat.Format24bppRgb);

unsafe

{

 byte* r = (byte*)(void*)bmData.Scan0;

 byte* g = (byte*)(void*)bmData.Scan0; g++;

 byte* b = (byte*)(void*)bmData.Scan0; b += 2;

}

