УДК 624.18-5

РАЗРАБОТКА САР РАСХОДА ОБЩЕГО ВОЗДУХА С КОРРЕКЦИЕЙ ПО О2

Беус А.С.

Научный руководитель – д.т.н., профессор Кулаков Г.Т.

Данная автоматическая система регулирования (САР) предназначена для поддержания наиболее экономичного режима сжигания топлива в топке котла. Известно, что для полного сжигания единицы расхода топлива необходим определенный объем воздуха, количество которого зависит от вида и сорта сжигаемого топлива и его характеристики.

Исходные данные для расчетов:

Входное регулирующее воздействие – расход воздуха, поступающего в топку $Q_{\rm B}$; выходная (регулируемая) величина - содержание свободного кислорода в поворотной камере газохода за пароперегревателем O_2 , %.

Динамика объекта регулирования

$$K_{on} = 1$$
 $K_{uH} = 1$
 $T_{on} = 5 c$ $T_{uH} = 10 c$
 $\sigma_{on} = 1 c$ $\tau_{y} = 2 c$
мущение: $W_{e}(p) = \frac{10}{30 p + 1}$

Крайнее внешнее возмущение:

Опережающий участок объекта регулирования:

$$W_{on}(p) = \frac{K_{on}}{(T_{on}p+1)(\sigma_{on}p+1)}$$

Инерционный участок объекта регулирования:

$$W_{uh}(p) = \frac{K_{uh}e^{-\tau_y p}}{\left(T_{uh}p+1\right)}$$

Структурная схема каскадной САР представлена на рисунке 1:

Рисунок 1. Структурная схема КСАР

Для оптимизации и улучшения прямых показателей качества целесообразно использовать инвариантную САР при плановом изменении нагрузки с дополнительно измеряемым внешним возмущением, структурная схема моделирования которой представлена на рисунке 2, а методы выбора структуры и параметрической оптимизации приведены в [1].

Рисунок 2. Структурная схема моделирования инвариантной САР при плановом изменении нагрузки с дополнительно измеряемым внешним возмущением

Анализ методов оптимизации

Исходные данные для моделирования переходных процессов представлены в таблице 1:

Таблица 1 - Данные для моделирования переходных процессов

Схема	Передаточная функция W(p)				
1	2				
1 Базовая	$W_{p1}(p) = 7,22 \frac{3,72p+1}{3,72p}$	$W_{p2}(p) = 2,5 \frac{10p+1}{10p}$			
2 СПО	$W_{p1}(p) = \frac{10p+1}{0,9p}$				
	$W_{\phi}(p) = 1 \frac{(10p+1)(0,9p+1)}{(0,764p+1)^2}$	$W_{_{3\partial 2}}(p) = \frac{e^{-2p}}{(0,764p+1)^2}$			

3 Инвариантная с доп. измерением <i>f</i> 2	$W_{p1}(p) = \frac{10p+1}{0,9p}$	$W_{yK3}(p) = \frac{10 \cdot 2,584 p}{(30p+1)(2p+1)}$		
	$W_{\phi}(p) = 1 \frac{(10p+1)(0,9p+1)}{(0,764p+1)^2}$	$W_{_{3\partial 2}}(p) = \frac{e^{-2p}}{(0,764p+1)^2}$		
4 Инвариантная без доп. измерения <i>f</i> 2	$W_{p1}(p) = \frac{10p+1}{0,9p}$	$W_{yK3}(p) = \frac{10 \cdot 2,584 p}{(30p+1)(2p+1)}$		
	$W_{\phi}(p) = 1 \frac{(10p+1)(0,9p+1)}{(0,764p+1)^2}$	$W_{_{3\partial 2}}(p) = \frac{e^{-2p}}{(0,764p+1)^2}$		

Рисунок 3. График переходного процесса при отработке скачка задания

Рисунок 5. График переходного процесса при отработке внешнего возмущения

Рисунок 6. График регулирующего воздействия при отработке f_2

На графиках представлены следующие методы:

- 1- Базовая схема;
- 2- Метод СПО;

3- Инвариантная САР при плановом изменении нагрузки с дополнительно измеряемым внешним возмущением;

4- Инвариантная САР при плановом изменении нагрузки с косвенным выделением эквивалентного внешнего возмущения.

Схема	Хзд		f_1		f_2		xp
	t _p , c	σ, %	t _p , c	A_1^+	t _p , c	A_1^+	
1	28,8	31,6	0	0,025	100,5	1,45	-1,2
2	5,56	0	0	0018	97,3	1,03	-1,7
3	5,56	0	0	0,033	50,3	0,49	-1,8
4	5,56	0	0	0,033	209,7	0,97	-2,1

Таблица 2 – ППК регулирования лучших КСАР

Как видим из графиков и таблицы ППК, лучшие прямые показатели качества регулирования при всех основных воздействиях показала инвариантная САР при плановом изменении нагрузки с дополнительно измеряемым внешним возмущением (схема 3). Время регулирования при отработке крайнего внешнего возмущения уменьшилось в 2 раза по сравнению с базовой. При этом максимальная динамическая ошибка сократилась в 3 раза.

Отработка внутреннего возмущения во всех схемах не выходит за пределы зоны нечувствительности.

При отработке скачка задания время регулирования в схеме 3 в 5,18 раза меньше, чем у базовой. Величина перерегулирования во всех схемах равна 0, кроме базовой ($\sigma_{M} = 31,6\%$).

Литература

1. Теория автоматического управления теплоэнергетическими процессами: учеб. пособие / Г.Т. Кулаков [и др.]; под ред. Г.Т. Кулакова. – Минск: Вышэйшая школа, 2017. – 238 с.: ил.