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In this article, Ritz’s method is used to calculate with unprecedented accuracy the displacements related
to a deformable rectangular plate resting on the surface of an elastic quarter-space. To achieve this
required three basic steps. The first step involved the study of Green’s function describing the vertical dis-
placements of the surface of an elastic quarter-space due to vertical force applied on its surface. For this
case, an explicit formula was obtained by analytically resolving a complicated integral that did not pre-
viously have an analytical solution. The second step involved the study of the coupled system of a plate
and an elastic quarter-space. This portion focused on determining reactive forces in the contact zone
based on Hetenyi’s solution. After determination of the reactive forces, certain features were attributed
to the plate’s edges. The final step involved the application of Ritz’s method to determine the deflections
of the plate resting on the surface of the quarter-space. Finally, an example calculation and validation of
results are given. This is the first semi-analytical solution proposed for this type of contact problem.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The contact problem of a deformable rectangular plate resting
on the surface of an elastic foundation has not had an exact solu-
tion to the present time. Despite its significant importance for
many geotechnical problems (amongst other fields), even a simple,
locally-deformable elastic foundation (Winkler’s model) has no ex-
act solution (Palatnikov, 1964). The main difficulty in finding exact
solutions for contact problem is in satisfying the static boundary
conditions along the plate’s edges. The problem is further compli-
cated when the considered model is other than the two classical
and most known ones, namely Winkler’s model and Boussinesq’s
model (half-space). Neither address the specific features related
to the quarter-space’s model. Other related studies of this model
are very limited at the present time. However, the following points
were raised by some researchers.

Boudjelkha and Diaz (1972) obtained the solution for the quar-
ter-space Dirichlet problem for Laplace’s equation based on the
Poisson integral formula for that of the half-space. This enabled
determination of a function to specify the partial differentiation
equation in the interior of a given region that prescribed values
on the boundary of the region. They deduced a representation the-
orem for harmonic functions in the quarter-space.
010 Published by Elsevier Ltd. All r
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In a related study, Hanson and Keer (1990) analyzed the prob-
lem of determination of the elastic stress and displacements in a
quarter-space under arbitrarily applied surface loadings, for which
they developed a solution that may then be used to analyze contact
problems for an elastic quarter-space based upon on a special solu-
tion for a half-space, which isolates the singularity, and is incorpo-
rated into the numerical-boundary-element solution of the
integral equations. Once the equations are solved, the solution
for elastic quarter-space can be found. The principle of quarter-
space is also used in the science of the cosmos. For example,
Schultz and Finn-Foley (2007) described the uses, advantages,
and drawbacks of quarter-space experiments compared to half-
space experiments when examining impact dynamics. The numer-
ical solution for an absolutely rigid rectangular plate resting on an
elastic quarter-space was solved previously by Aleksandrov and
Pozharskogo (1998).

Rigorous mathematical analyses have also been applied to the
study of deformable plates resting on an elastic foundation. Tseyt-
lin (1984) proposed a solution for the axi-symmetric bending of
circular plates resting on an elastic foundation by using the plate’s
vertical displacements, in the form of Eigen functions of a differen-
tial operator of the axi-symmetric vibrations of a circular plate
with free edges. Later, this idea was implemented in the solution
of contact problems for rod and ring plates (Bosakov, 2006). At-
tempts to derive similar relationships for a bending rectangular
plates resting on elastic foundation with free edges have
ights reserved.
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Fig. 1. Rectangular plate resting on the surface of an elastic quarter-space.
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Fig. 2. A concentrated force on the elastic quarter-space’s surface.

S. Guenfoud et al. / International Journal of Solids and Structures 47 (2010) 1822–1829 1823
previously failed to such an extent that pessimistic predictions
about the viability of obtaining Eigen functions of the flexural
vibrations of a rectangular plate resting on an elastic foundation
with free edges have been published (Zecai, 1988).

On a related subject, in 1908, Ritz considered the problem of
vibrations of a rectangular plate with free edges (Timoshenko,
1959). The normal function of vibration of a rod was taken to express
the coordinate functions of the vibration of plate. Later, Kontorovich
and Krylov (1962) also used these functions to solve the rectangular
plate vibration problem. Korenev and Rabinovich (1972) and Bolotin
(1978) then used these coordinate functions for calculation of rect-
angular plates resting on an elastic foundation, but they were only
able to generate an approximate solution for this problem.

To more accurately depict the deflection of a deformable rectan-
gular plate resting on the surface of an elastic quarter-space, a
coordinate function of deflections using a quasi-Eigen function of
a differential operator of the flexural vibrations of a rectangular
plate with free edges was derived by Bosakov (2007).

The problem has been classified as belonging to the order of non-
classical contact problems (Aleksandrov et al., 1976). Several
approximate calculation methods exist to determine reactive forces
and/or displacement for a rectangular plate resting on the surface of
an elastic foundation. Prominent amongst these are the double
power series by Gorbunov-Posad et al. (1984), the Zhemochkin
method (Zhemochkin and Sinitsyn, 1962), and other numerical ap-
proaches, such as the boundary element method Aliabadi (2002),
and the finite element method Hild and Laborde (2002).

The problem of a flexible surface exerting stresses along an-
other flexible surface regularly occurs in Geotechnics, where Win-
kler’s model is most commonly applied. The approach has been
adopted most frequently for soil–structure interaction for shallow
foundations (Massalas et al., 1978; Kubenko et al., 2006), but used
as well for laterally loaded deep foundations (Horvath, 1984),
retaining walls (Laefer (2001)), mining (Pytel and Chugh, 1989),
tunneling (Najm and Ishijima, 1993), roadway repair (Cho et al.,
1996), runway performance prediction (Pan and Atluri, 1995),
train–railway track interaction (Knothe and Le-The, 1985), silo
construction (Vasilenko and Emelyanov, 1993), and soil–struc-
ture–water interaction problems (Stefanou, 1983). Additionally,
similar concerns arise in a variety of materials either in their man-
ufacturing or performance, particularly when thin coatings are
overlain on other substrates (Chai, 2003; Sriram et al., 2003; Wep-
pelmann and Swain, 1996). Examples include laminated glass
(Grant et al., 1998), austenitic stainless steel (Stellwag, 1998),
and dental work (Huang et al., 2005).

2. Problem scope

In this paper a deformable rectangular plate resting on the sur-
face of an elastic quarter-space with free edges is considered, with
the goal of determining a solution very close to the exact one,
when subjected to external loading. A version of this problem is
shown in Fig. 1 with an external, concentrated, point load in the
center, but the scope of this work is applicable to distributed exter-
nal loads, as well. The problem is to determine the distribution of
reactive forces in the contact zone, between the plate and the sur-
face of quarter-space, as well as the vertical displacements of the
plate. No shear stresses are considered in the contact area. Below,
a solution of the bending rectangular plate problem based on the
Ritz method (Timoshenko, 1959) is presented.

3. Determination of the vertical displacements of the surface of
quarter-space

First, an analytic expression for the vertical displacements of
the surface of an elastic quarter-space subjected to a concentrated
vertical force P was obtained. In the literature, such a task is called
Hetenyi’s solution, (Hetenyi, 1970). Keer et al. (1983) first derived
the solution for a quarter-space using the principle of superposi-
tion of two half-spaces subjected to a symmetrically concentrated
vertical force.

In the work of Bosakov et al. (2001) [by extrapolation the ap-
proach of Uflyand (1972)], an exact expression for the unknown
displacements V of the surface of quarter-space in the form of tri-
ple integral was obtained as shown in (1):

V ¼ Pð1� mÞ
2Gp3

Z 1

0

Z 1

0

Z 1

0
Kðt; sÞKisðrxÞ cosðstÞ

� cosðryÞe�ru coshðtÞdt dsdr ð1Þ

where

Kðt; sÞ ¼ sinhðpsÞ½ �2

sinhðpsÞ½ �2 � s� 2e tanhðps=4Þ
coshð2tÞ

� �2 ð2Þ

and G ¼ E
2ð1þmÞ ; e ¼ 1� 2m, E and m are modulus and Poisson’s ratio

of the quarter-space; P is the external force; t; s;r are variables of
integration; u the distance between the origin and the point where
the force is applied (Fig. 2); KisðrxÞ the MacDonald function with
argument ðrxÞ, where i ¼

ffiffiffiffiffiffiffi
�1
p

(Gradshteyn and Ryzhik, 1969).
Using a special method of approximation, based on the work of

Vorovich et al. (1974) a convenient formula for the computation
across elementary functions was obtained from (1). For this pur-
pose, the function Kðt; sÞ was expanded over the small parameter
e ¼ 1� 2m and restricted to the first two members of series. From
that Eqs. (3)–(5) were obtained:
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Fig. 4. Graphics comparison of the function L2ðsÞ by formulas (5) and (8).
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Fig. 5. Effect of the terms number of series (9) on the value of the final
displacements.
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Kðt; sÞ � L1ðsÞ �
4e

coshð2tÞ L2ðsÞ ð3Þ

L1ðsÞ ¼
2 sinhðpsÞ½ �2

coshðpsÞ � 1� 2s2 ð4Þ

L2ðsÞ ¼
s sinhðpsÞ½ �2 tanhðps=4Þ

sinhðps=2Þ½ �2 � s2
� �2 ð5Þ

Comparison of the graphs of functions Kðt; sÞ at m ¼ 1=3, with
the formulas (2) and (3), as depicted in Fig. 3, shows an excellent
agreement between them.

Next, the asymptotic properties of 1
coshðpsÞ L1ðsÞ and L2ðsÞ are con-

sidered with respect to (6) below:

lim
s!0

L1ðsÞ 1
coshðpsÞ ¼ 4p2

p2�4

lim
s!1

L1ðsÞ 1
coshðpsÞ ¼ 2

lim
s!0

L2ðsÞ ¼ 4p3

ðp2�4Þ2

lim
s!1

L2ðsÞ ¼ 4s

ð6Þ

In accordance with the asymptotic properties in (6), the term L1ðsÞ
was approximated over the interval ½0;1½ by the expression (8)

L1ðsÞ ¼ 2þ 2p2 þ 8
ðp2 � 4Þ coshðpsÞ

� �
coshðpsÞ ð7Þ

Fig. 3 is also nearly identical to the function L1ðsÞ, which is given by
(4) and (7).

In the same way, an approximation was made over the interval
½0;1½ the function L2ðsÞ by following expression (8):

L2ðsÞ ¼ 4s coth
ðp2 � 4Þ2s

p3

 !
ð8Þ

Fig. 4 illustrates the function L2ðsÞ, which is given by (5) and (8).
However, after considerable mathematical difficulties the inte-

gral: I ¼
R1

0 s coth ðp2�4Þ2
p3 s

� �
cosðstÞKisðrxÞds, included in the for-

mula (3) of L2ðsÞ still defied exact calculation. Therefore, by
determining displacements Vðx; yÞ; L2ðsÞ could be decomposed in
a power series in the neighborhood of s ¼ 0 as shown in (9):

L2ðsÞ � 3:59991þ 1:14597s2 � 0:00203s4 � 0:00997s6

þ 0:00141s8 � 0:000064s10 þ � � � ð9Þ

from which only the first few terms were retained.
Neglect of the remaining members of the series (9) only insig-

nificantly affects the value of the final displacements Vðx; yÞ. In
support of this, Fig. 5 shows displacements Vðx; yÞ, constructed
by taking into account 2 and 3 members of the series (9) at y ¼ 0.
τ
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Fig. 3. Graphical comparison of the function Kðt; sÞ by formulas (2) and (3); nearly
identical in appearance to the function L1ðsÞ by formulas (4) and (7).
Next, the values of the integrals in (10) as previously derived by
Gradshteyn and Ryzhik (1969), Rektoris (1985) were used to calcu-
late the integral expression (1).

R1
0 cosðstÞe�ru coshðtÞdt ¼ KisðruÞR1
0 KisðrxÞKisðruÞ cosðryÞdr ¼ p2

4
ffiffiffiffi
ux
p

coshðpsÞ P�1
2 þis coshðlÞð ÞR1

0 P�1
2 þis coshðlÞð Þ cosðbsÞ

coshðpsÞ ds ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshðlÞþcosðbÞ
pR1

0 cosðstÞKisðrxÞds ¼ p
2 e�rx coshðtÞ

8>>>>><
>>>>>:

ð10Þ

where P�1
2 þisðcoshðlÞÞ is the Legendre function (Gradshteyn and

Ryzhik, 1969); b takes 0 or p; coshðlÞ ¼ u2þx2þy2

2ux :

Omitting intermediate calculations, the required expression for
the quarter-space’s surface displacements caused by the action of a
concentrated force P, is expressed in (11) in terms of elementary
functions with the first three terms of series (9):

Vðx; yÞ ¼

Pð1� m2Þ
pE

(
1
R1
þ B0

1
R2
� ð1� 2mÞ

"
B1

ðuþ xÞ
ffiffiffi
2
p
� uþx

R1

� �
y2 þ R2

2

� B2
ux

R2
2

� B3p
uxðu2 � 7uxþ x2 þ y2Þ

2R5
2

#)
ð11Þ

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� xÞ2 þ y2

q
; R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ xÞ2 þ y2

q
; B0 ¼ p2þ4

p2�4; B1 ¼ 1:59991;

B2 ¼ 1:14597; B3 ¼ 0:00812:
Of note is that the first term in (11) corresponds to the Bous-

sinesq solution for an elastic half-space (Gorbunov-Posad et al.,
1984) and contains a singularity. The remaining terms are smooth
continuous functions with decay at infinity as 1=x. On the edge of
the wedge ðx ¼ 0Þ, displacement is limited.

Fig. 6 shows that the vertical displacements of the quarter-
space’s surface depends on Pð1�m2Þ

pEa with m ¼ 1=3, due to the concen-
trated force P situated at a distance ðu ¼ 1:5 mÞ from the edge.



Fig. 6. Vertical displacements of the quarter-space’s surface due to a concentrated
force.
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4. Deflections of a rectangular plate resting on the surface of an
elastic quarter-space

The deflection of a rectangular plate Wðx; yÞ with dimensions
ð2a� 2bÞ, as resting on an elastic quarter-space’s surface (Fig. 1)
has been represented previously Bosakov (2007) as (12):

Wðx; yÞ ¼ A0 þ A1
x
a
þ A2W2ðx; yÞ ð12Þ

where A0;A1;A2 are undetermined coefficients; W2ðx; yÞ is the qua-
si-Eigen function of the differential operator of flexural vibrations
of a rectangular plate with free edges, as obtained by Bosakov
(2007):

W2ðx; yÞ ¼ cos a2
x
a

� �
cos b2

y
b

� �
� sinða2Þ sinðb2Þ

sinhða2Þ sinhðb2Þ
cosh a2

x
a

� �
� cosh b2

y
b

� �
; a2 ¼ b2 ¼ 2:36502: ð13Þ

The first term in (12) represents the vertical displacement of the
plate and the second term represents its rotation.

5. Solution

5.1. Method

The distribution of the reactive forces in the contact zone be-
tween the rectangular plate and the quarter-space’s surface was
assumed to be (14)

qðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q X1
i¼0

X1
k¼0

BikTi
x
a

� �
Tk

y
b

� �
ð14Þ

where Ti
x
a

� �
; Tk

y
b

� �
based on Chebyshev polynomials (Gradshteyn

and Ryzhik, 1969); Bik are undetermined coefficients.
Hetenyi’s solution, (Hetenyi, 1970), for the displacement of a

point Miðx; yÞ, located on the quarter-space’s surface due to the
unit force at a point Mjðn;gÞ can be represented as (15)

Vðx; y; n;gÞ ¼
X1
m¼0

X1
n¼0

X1
p¼0

X1
q¼0

Cpq
mnðaÞTm

x
a

� �
Tn

y
b

� �
Tp

n
a

	 

Tq

g
b

� �
ð15Þ

Here a ¼ b=a.
Cpq
mnðaÞ ¼ bpq

mn

Z a

�a

Z b

�b

Z a

�a

Z b

�b
Vðx; y; n;gÞ

�
Tm

x
a

� �
Tn

y
b

� �
Tp

n
a

� �
Tq

g
b

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q ffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

b2

q dgdndydx ð16Þ

where Vðx; y; n;gÞ in formula (16) is given by (11), with P ¼ 1.
Coefficients bpq

mn were determined by the general Chebyshev’s
formula for the orthogonal polynomials (Gradshteyn and Ryzhik,
1969).

b00
00 ¼

1
p4 ; b00

i0 ¼ b00
0i ¼ bi0

00 ¼ b0i
00 ¼

2
p4 ; b00

ik ¼ b0k
0i ¼ bik

00 ¼ bi0
k0 ¼ bi0

0k

¼ b0i
k0 ¼

4
p4 ; b‘0ik ¼ b0‘

ik ¼ bik
0‘ ¼ bik

‘0 ¼
8
p4 ; bik

mn ¼
16
p4

From this, the relationship (14) multiplied by the relationship (15)
must be integrated over the area considered in (17). The integral
equation of the studied contact problem (Fig. 1) has been previously
considered by Aleksandrov et al. (1976) as follows (17):

Wðx; yÞ ¼
Z a

�a

Z b

�b
Vðx; y; n;gÞqðn;gÞdgdn ð17Þ

By substituting expressions (14) and (15) into (17) and integrating
by n and g, then the two parts of Eq. (17) could be multiplied by

Ti
x
að ÞTk

y
bð Þffiffiffiffiffiffiffiffi

1�x2

a2

q ffiffiffiffiffiffiffiffi
1�y2

b2

q dydx and again integrated over the area of the rectangu-

lar plate.
Since the problem is symmetric along the y-axis, all indices re-

lated to y and g take only even values. As a result, the relationship
between the coefficients Ai and Bik can be represented in a matrix
form (18)

½C�fBg ¼ pE
ð1� m2Þb ½A� ð18Þ

where

½C� ¼ p4

C00
00

1
2 C02

00
1
2 C04

00 � � � 1
4 C44

00 � � �
1
2 C00

02
1
4 C02

02
1
4 C04

02 � � � 1
8 C44

02 � � �

..

. ..
. ..

.
� � � ..

.
� � �

1
4 C00

12
1
8 C02

12
1
8 C04

12 � � � 1
16 C44

12 � � �

..

. ..
. ..

.
� � � ..

.
� � �

1
4 C00

44
1
8 C02

44
1
8 C04

44 � � � 1
16 C44

44 � � �

..

. ..
. ..

.
� � � ..

.
� � �

2
6666666666666664

3
7777777777777775

fBgT ¼ ½B00 B02 � � � B12 � � � B44 � � ��

½A�T ¼

A0S0
00 0 0 0 0 � � �

0 A1S1
11 0 0 0 � � �

A2S2
20 A2S2

21 A2S2
22 � � � � � � � � �

..

. ..
. ..

. ..
. ..

.
� � �

2
666664

3
777775

where

S0
ik ¼

Z 1

�1

Z 1

�1

Ti
x
a

� �
Tk

y
b

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q dxdy; S1
ik

¼
Z 1

�1

Z 1

�1
x

Ti
x
a

� �
Tk

y
b

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q dxdy; S2
ik

¼
Z 1

�1

Z 1

�1
W2ðx; yÞ

Ti
x
a

� �
Tk

y
b

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q dxdy:
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Thus, from (18) the values of the vector {B} were obtained.

fBg ¼ pE
ð1� m2Þb ½A�½X� ð19Þ

B00 ¼ pE
ð1�m2Þb A0S0

00X11 þ A1S1
11X12 þ A2

P1
i¼1

X1iS
2
2i

	 


B02 ¼ pE
ð1�m2Þb A0S0

00X21 þ A1S1
11X22 þ A2

P1
i¼1

X2iS
2
2i

	 


B04 ¼ pE
ð1�m2Þb A0S0

00X31 þ A1S1
11X32 þ A2

P1
i¼1

X3iS
2
2i

	 


..

.

8>>>>>>>>>>><
>>>>>>>>>>>:

ð20Þ

where ½X� ¼ ½C��1.
As the determination of the coefficients Bik is not complete, the

reaction forces in the contact zone defined by the expression (14)
cannot yet be determined. This is the major challenge of the con-
tact problems and relies upon the determination of the unknowns
Ai; i ¼ 0;1;2 in (20).

5.2. Study of the total energy of the system

To determine the coefficients A0; A1 and A2 (12), the total en-
ergy of the system is consider. This includes the quarter-space,
along with the plate and the external load. As such, the total energy
of the system can be represented as the sum of three terms (Alex-
androv and Potapov, 1990), as shown in (21)

fx1 ¼ U þKþP ð21Þ

where

U¼D
2

Z a

�a

Z b

�b

@2W
@x2 þ

@2W
@y2

 !2

�2ð1�mpÞ
@2W
@x2

@2W
@y2 �

@2W
@x@y

 !2
0
@

1
A

2
4

3
5dydx

ð22Þ

K ¼ 1
2

Z
x

Z
y
qðx; yÞWðx; yÞdydx ð23Þ

P ¼ �
Z

x

Z
y

qðx; yÞWðx; yÞdydx ð24Þ

U is the energy of bending plate; K the work of reactive forces in the
contact zone numerically equal to the energy of deformation of the
quarter-space’s surface (Selvadura, 1979); P the work of the exter-
nal load qðx; yÞ, acting on the plate; D the cylindrical rigidity of the
plate; mp the Poisson ratio of the plate; qðx; yÞ is the external load ap-
plied on the plate.

By substituting (12), (14) and (20) into (22)–(24) and integrat-
ing over the area of the plate, the total energy fx1 is obtained. Dif-
ferentiating the total energy over the unknown coefficients
Ai; i ¼ 0;1;2, a linear system of algebraic equations is obtained
for their determination, i.e.

@fx1
@A0
¼ 0

@fx1
@A1
¼ 0

@fx1
@A2
¼ 0

8>><
>>: ð25Þ

The determination of the unknowns Ai not only allows the determi-
nation of deflection of the plate, but also the coefficients Bik, by the
formulas (20), which finally allows to determination of the reactive
forces in the contact zone.
6. Example calculation

To better demonstrate the efficiency of this approach, a sample
calculation is provided. In this case a rectangular plate with cylin-
drical rigidity D and dimensions a ¼ b=2 ¼ 1 m is considered. The
plate is located on the surface of an elastic quarter-space with con-
stant E and m offset at a distance of oc ¼ 1 m (Fig. 1). The plate is
loaded at its center with a concentrated force P.

Accordingly, the distribution law of the reactive forces (14)
takes the form

qðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q X2

i¼0

X1

k¼0

BikTi
x
a

� �
T2k

y
b

� �
ð26Þ

As a result of the calculations by the proposed Ritz-based method,
the following values were obtained:

½C� ¼

188:366 �3:604 10:156 14:559 :139 10:538

�3:604 40:297 �:113 :139 14:24 :00323

10:0256 �:113 24:0455 10:43 :00323 12:0

14:354 :139 10:444 34:988 �:1664 9:846

:139 14:09 :00325 �:1664 19:88 �:0145

10:339 :00325 11:885 9:75 �:0145 14:615

2
66666666664

3
77777777775

fBgT ¼ ½B00 B10 B20 B02 B12 B22�

½A�T ¼
p2A0 0 0 0 0 0

0 p2

2 A1 0 0 0 0

�1:53252A2 0 �:6502A2 �:6502A2 0 1:5785A2

2
664

3
775

Similarly, by applying (20), the unknown vector fBg can be
determined:

B00 ¼
pE

bð1� m2Þ ð0:0553162A0 þ 0:0034509A1 � 0:011753A2Þ

B10 ¼
pE

bð1� m2Þ ð0:0069A0 þ 0:163832A1 � 0:001643A2Þ

B20 ¼
pE

bð1� m2Þ ð�0:00348599A0 þ 0:00149474A1 � 0:1271A2Þ

B02 ¼
pE

bð1� m2Þ ð�0:0141455A0 � 0:002455A1 � 0:0463242A2Þ

B12 ¼
pE

bð1� m2Þ ð�0:00541677A0 � 0:116164A1 þ 0:00106289A2Þ

B22 ¼
pE

bð1� m2Þ ð�0:0268667A0 � 0:00217A1 þ 0:250593A2Þ

From the above, the work of the reaction forces, the energy of bend-
ing, and the work of the external load can be determined, as dem-
onstrated below.

6.1. Work of the reaction forces

The work of the reaction forces as expressed in (23) is shown
below:

K ¼ 1
2

Z a

�a

Z b

�b
A0 þ A1

x
a
þ A2W2ðx; yÞ

� �X2

i¼0

X1

k¼0

BikTi
x
a

� �
T2k

y
b

� �

� dydxffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

q ¼ Epa
1� m2 0:272975A2

0 þ 0:404239A2
1

h

� A0ð�0:034A1 þ 0:11586A2Þ � 0:0081A1A2 þ 0:26317A2
2

i
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6.2. The energy of bending

The energy of bending is similarly expressed by use of (22).

U¼D
2

Z a

�a

�
Z b

�b

@2W
@x2 þ

@2W
@y2

 !2

�2ð1�mpÞ
@2W
@x2

@2W
@y2 �

@2W
@x@y

 !2
0
@

1
A

2
4

3
5dydx

¼ D

a3b3 10:549a4þ10:549b4þa2b2ð35:9�14:802mpÞ
� �

A2
2

h i
Fig. 8. Reactive force distribution in the contact zone plate and quarter-space’s
surface at y ¼ 0 due to the action of a vertical concentrated force applied at the
center of the plate.
6.3. The work of the external load

Similarly (24) is used to describe the work of the external load

P ¼ �PWðx; yÞj x¼0
y¼0

n ¼ �P A0 þ A2 1� sinð2:36502Þ½ �2

sinh2ð2:36502Þ
h i2

0
B@

1
CA

2
64

3
75

According to (25)

0:545949 0:034 �0:11586
0:034 0:808479 �0:0081
�0:11586 �0:0081 0:526þ 1

b
21:098a3

b3 þ 71:8a
b þ 21:098b

a � 29:6amp

b

� �
2
64

3
75

�
A0

A1

A2

2
64

3
75 ¼

1
0

0:982349

2
64

3
75

b ¼ pEa3

Dð1�m2Þ is the stiffness ratio (Selvadura, 1979; Gorbunov-Posad
et al., 1984).

The solution of this system of equations gives

A0

A1

A2

2
64

3
75 ¼ Pð1� m2Þ

pEa

� 1:8365þ 0:0609057ab3b

5:07073a4 þ 5:07073b4 þ 0:1206ab3bþ a2b2ð17:2568� 7:1153mpÞ

"

� 0:07737þ 0:000310355ab3b

5:07073a4 þ 5:07073b4 þ 0:1206ab3bþ a2b2ð17:2568� 7:1153mpÞ
0:287088ab3b

5:07073a4 þ 5:07073b4 þ 0:1206ab3bþ a2b2ð17:2568� 7:1153mpÞ

This mathematical manipulation in terms of the stiffness ratio, b,
easily allows knowing the plate rigidity; the value of b is zero, if
the plate is rigid, and it is greater than zero, if the plate is
deformable.
Fig. 7. Vertical displacements depicting the form of a bent rectangular plate resting
on the quarter-space’s surface due to the application of a vertical concentrated force
in the center of the plate.
Figs. 7 and 8 show the vertical displacements of the bending
rectangular plate resting on the surface of an elastic quarter-space
depending on Pð1�m2Þ

pEa and the reactive force distribution in the con-
tact zone throughout axis x, i.e. at ðy ¼ 0Þ depending on P=a2 when
b ¼ 10 and mp ¼ 0:17.

7. Validation

For a rectangular plate resting on the surface of an elastic quar-
ter-space (Fig. 1), three equations of equilibrium can be created
(27):

X
z ¼

Z a

�a

Z b

�b
qðx; yÞdxdy ¼ P ð27:aÞ

X
Mx ¼

Z a

�a

Z b

�b
yqðx; yÞdxdy ¼ 0 ð27:bÞ

X
My ¼

Z a

�a

Z b

�b
xqðx; yÞdxdy ¼ 0 ð27:cÞ

By exploiting the orthogonality of the problem (generated by
the Chebyshev polynomials) allows direct determination of Bik

from formula (26). Thus, for a plate with dimensions b ¼ 2a, the
following can be obtained from (26)

B00 ¼
P

p2ab
¼ 0:05066

P
a2 ; B10 ¼ 0:

The adopted reactive force distribution law in the above exam-
ple enables the advantageous automatic execution of the second
equation of equilibrium (27.b), because of the parity on y.

For the remaining two coefficients in the example, the following
values were obtained from the proposed Ritz-based method:

B00 ¼ 0:05066
P
a2 ; B10 ¼ 2:08283� 10�7 P

a2

The exact match of the first two terms confirms the correctness
of the calculations. The resulting error ð2:08283� 10�7Þ should be
explained by the numerical integration errors in the calculation of
Cpq

mnðaÞ by the formula (16).
Another point of validation is for a rigid, rectangular plate rest-

ing on an elastic quarter-space’s surface, which can be obtained
from the above example at b ¼ 0:

A0 ¼ 0:58458
Pð1� m2Þ

Ea
; A1 ¼ �0:02463

Pð1� m2Þ
Ea

; A2 ¼ 0

For a similar rigid rectangular plate resting on an elastic half-
space’s surface, as previously reported by Gorbunov-Posad et al.
(1984) and Kiselev (1973):

w0 ¼ 0:3182
Pð1� m2Þ

Ea
; u0 ¼ 0:
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On an elastic quarter-space at x ¼ y ¼ 0, the vertical displace-
ment w0 ¼ A0, and its angle of rotation is relative to the axis
oy u0 ¼ �A1=a. So, linear and rotational displacement of a rigid
rectangular plate on an elastic quarter-space is greater than that
of the same rigid plate on an elastic half-space. This clearly illus-
trates that a quarter-space solution should provide a superior
result.

8. Conclusions

In this paper, an approach is presented that employs Ritz’s
method to calculate the deflections of a deformable rectangular
plate resting on an elastic foundation due to a load applied at
any point(s) on the plate. This calculation also allows determina-
tion of the reactive forces in the contact zone, thereby solving
the main challenge of the contact problem. This approach implic-
itly uses the method of orthogonal polynomials, which allows fea-
ture selection of the reactive forces at the edges of the plate. The
final algorithms obtained are given in a simple form and compati-
ble with the applications in engineering. It can be realized for any
type (model) of elastic foundation, arbitrary external loading and
any plate stiffness of a rectangular geometry.

The major advantage of this work lies in the following points:

1. It employs a quarter-space approach, where few researchers
have investigated this model due to its complexity; the tendency,
generally, is to use the half-space as evidenced by the very high
number of publications employing the half-space model

2. It addresses the problem of a deformable plate resting on a foun-
dation, where most research has been restricted to rigid plates.

The proposed solution is almost exact, thereby reducing the max-
imum error of calculation and in a form sufficiently simple to be
compatible with engineering applications.

Appendix A

In the framework of linear theory of bending plates (Kirchhoff
theory), the natural oscillations (Eigen-forms) of a rectangular
plate ð�a 6 x 6 a; �b 6 y 6 bÞ with the free edges, cylindrical
rigidity mD and Poisson’s ratio mp are examined.

The equation of flexural vibrations has the form

DDW � kW ¼ 0 ð1Þ

where

k ¼ mx2=D; D ¼ @2=@x2 þ @2=@y2;

Wðx; yÞ are the plate deflections, m is the mass distribution, x is the
frequency of natural oscillations (Eigen values).
Table 1
Coordinate functions using in the calculation of deformable rectangular plates.

Fluctuation descriptions Eigen functions

Symmetric regarding axes x and y cosðaixÞ cosðbkyÞ � sinða
shða

Symmetric regarding the x-axis cosðaixÞ sinðbkyÞ þ sinða
shða

Symmetric regarding the y-axis sinðaixÞ cosðbkyÞ þ cosða
chða

Non-symmetric regarding axes x and y sinðaixÞ sinðbkyÞ � cosða
chða
The static boundary conditions are

x ¼ �a :
@2W
@x2 þ mp

@2W
@y2 ¼

@3W
@x3 þ ð2� mpÞ

@3W
@x@y2 ¼ 0

y ¼ �b :
@2W
@y2 þ mp

@2W
@x2 ¼

@3W
@y3 þ ð2� mpÞ

@3W
@x2@y

¼ 0

ð2Þ

Without loss of generality, the case of symmetrical oscillations
regarding the axis x and y is considered. Representing the deflec-
tions of the plate as the sum of two partial solutions of Eq. (1) as
follow:

Wðx; yÞ ¼ C1 cosðaxÞ cosðbyÞ þ C2chðaxÞchðbyÞ ð3Þ

Substituting (3) in the static boundary conditions (2) and revealing
the determinant, (4) is known from the theory of beam functions of
transcendental equations for determining a and b.

tanhðaÞ þ tanðaÞ ¼ 0
tanhðbÞ þ tanðbÞ ¼ 0

ð4Þ

After substituting the solutions of the system Eq. (4) in the Eq. (1)
the expression (5) for the natural frequencies (Eigen values) of
vibration symmetrically regarding the axes x and y can be written.

xik ¼
a2

i

a2 þ
b2

k

b2

 ! ffiffiffiffiffi
D
m

r
ð5Þ

To determine the forms of oscillations (Eigen forms) of the plate,
equilibrium conditions equal to zero the torsion moments at the
corners of a rectangular plate with free edges are considered (6)

x ¼ �1; y ¼ �1 :
@2W
@x@y

¼ 0 ð6Þ

Under condition (6), Eq. (3) leads to the following expression:
C2
C1
¼ � sina sin b

shashb , that allows defining the forms ik of the symmetrical
natural oscillations regarding the coordinate axes x and y as follow:

Wikðx; yÞ ¼ C1 cosðaixÞ cosðbkyÞ � sinðaiÞ sinðbkÞ
shðaiÞshðbkÞ

chðaixÞchðbkyÞ
	 


ð7Þ

Natural frequencies and forms of natural oscillations corre-
sponding to symmetric and non-symmetric along one or two axes
can be obtained similarly. In Table 1, the expressions are given con-
cerning the forms of natural oscillations and the appearance of
transcendental equations to determine the natural frequencies
according to Eq. (5). It should be borne in mind that the first natu-
ral forms of oscillations of a rectangular plate with free edges cor-
respond to the values a ¼ b ¼ 0, and under such conditions, the
displacement and the rotation of the plate appear like those of
an absolutely rigid plate.
Transcendental equations and roots

iÞ sinðbkÞ
iÞshðbkÞ

chðaixÞchðbkyÞ tanhðaÞ þ tanðaÞ ¼ 0
tanhðbÞ þ tanðbÞ ¼ 0
a1 ¼ 0 ¼ b1
a2 ¼ 2:3650 ¼ b2
a3 ¼ 5:4978 ¼ b3
. . .

iÞ cosðbkÞ
iÞchðbkÞ

chðaixÞshðbkyÞ tanhðaÞ þ tanðaÞ ¼ 0
tanhðbÞ � tanðbÞ ¼ 0

iÞ sinðbkÞ
iÞshðbkÞ

shðaixÞchðbkyÞ tanhðaÞ � tanðaÞ ¼ 0
tanhðbÞ þ tanðbÞ ¼ 0

iÞ cosðbkÞ
iÞchðbkÞ

shðaixÞshðbkyÞ tanhðaÞ � tanðaÞ ¼ 0
tanhðbÞ � tanðbÞ ¼ 0
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The Eigen functions bring in the above table are used like coor-
dinate functions even for calculation of deformable rectangular
plates resting on elastic foundation as our case, whatever the case
of symmetry or non-symmetry regarding the axes of co-ordinates.
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