В полупроводнике n-типа основными носителями свободного заряда являются электроны, а в полупроводнике p-типа основными носителями являются дырки $(n_p >> n_p)$. При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. Уровни Ферми в n- и p- полупроводниках при комнатной температуре до контакта расположены на разной высоте: в полупроводнике n-типа — вблизи дна зоны проводимости, а в полупроводнике p-типа — у потолка валентной зоны.

Способность p-n-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. При их изготовлении в кристалл с заданным типом проводимости входят примесь обратной проводимости и кристалл с p-n-переходом в герметезирующий корпус.

УДК 621.38

ОСОБЕННОСТИ ПОЛУЧЕНИЯ ИЗОБРАЖЕНИЙ СБИС С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРНОГО ГЕНЕРАТОРА

Студентка гр. 1130414 Шабура М. А. Кандидат техн. наук, доцент Ковалевская А. В. Белорусский национальный технический университет

Фотолитография является одной из основных операций в технологическом процессе изготовления ИС. Через эту операцию неоднократно проходит весь поток обрабатываемых кремниевых пластин. Основным инструментом фотолитографии является фотошаблон с топологическим рисунком единичного технологического слоя ИС.

Изготовление фотошаблонов — это отдельная ветвь в схеме производства ИС, которая включает процессы проектирования топологии, изготовление оригиналов топологий или непосредственное генерирование изображений и собственно изготовление фотошаблонов. Сканирующие многоканальные лазерные генераторы представляют новое поколение лазерных генераторов изображений для изготовления фотошаблонов и непосредственного формирования изображений на полупроводниковых пластинах без ограничения на размер кристалла. Генератор изображений формирует элементы топологии с высокой точностью, способны рисовать фазосдвигающие фотошаблоны, а также фотошаблоны с коррекцией оптической близости. Время формирования изображения зависит только от размера кристалла и не зависит от сложности топологии слоя.

Основные особенности генераторов:

- 1. Оригинальный метод формирования эталонных изображений.
- 2. Электрооптическая система управления излучением лазера.

3. Координатный стол на магнитно-воздушной подушке с использованием линейно-шаговых двигателей и лазерных интерферометров.

Изображение формируется по принципу микрофотонабора. В системе экспонирования генератора используется моноблочный импульсный лазер на молекулярном азоте с длиной волны 337 нм, длительностью светового импульса 6-8 нс не и рабочей частотой до 1 кГц. Мощность лазера 240 мВт.

Генератор предназначен для изготовления металлизированных фотошаблонов при производстве БИС, СБИС и других изделий электронной техники и формирования топологических структур на полупроводниковых пластинах.

УДК 621.372.061

МАТЕРИАЛЫ ДЛЯ НАНОМЕДИЦИНЫ

Студент гр. 11310116 Ширяева В. А. Кандидат техн. наук, доцент Кузнецова Т. А. Белорусский национальный технический университет

Одним из перспективных направлений современной медицины является использование нанотехнологий. Наномедицина — это различные виды контроля биологических систем человека на молекулярном уровне с помощью разработанных наноустройств и наноструктур. Предполагается, что эти устройства, проникая в организм человека, смогут распознавать зародившиеся болезни и уничтожать их, возвращать молодость, будут способны оживлять людей, замороженных методами крионики.

Одним из таких устройств является наноробот. Наноробот – это робот размером менее 100 нм, который способен к передвижению, обработке и передаче информации, выполнению поставленных задач.

На сегодняшний день существует несколько материалов, на основе которых могут быть произведены нанороботы.

- 1. Алмазоид или сапфироид. Имеет высокую прочность и является химически инертным материалом. Этот материал может обеспечить совместимость наномашин и тканей человеческого организма.
- 2. ДНК молекула с физическими свойствами, которые делают ее идеальной основой как для конструирования на наноуровне, так и для хранения информации [1].
- 3. Белки высокомолекулярные органические соединения, которые содержат в себе аминокислоты, связанные пептидной связью.

Нанороботы были впервые продемонстрированы учеными в 2010 году. Они были изобретены на основе ДНК и способны перемещаться в пространстве.

В ближайшие 10–20 лет одной из важнейших задач в Республике Беларусь будет разработка материалов для наномедицины. Уже начало применяться введение наночастиц в организм человека с целью диагностики и лечения заболеваний на ранних стадиях.