
50

УДК 004.41:811.111

Borodach V., Vasilenya M., Beznis Y.

Software. Notion and Development

Belarusian National Technical University

Minsk, Belarus

A software-based system can be neatly compared with a

biological entity called a superorganism. Comprising software,

hardware, peopleware and their interconnectivity (such as the

Internet), and requiring all to survive, the silicon

superorganism is itself a part of a larger superorganism [1].

Whether that business is government, academic, or

commercial, the software-based system, like its biological

counterpart, must grow and adapt to meet rapidly changing

requirements. Compared to a biological superorganism, which

may take many generations to effect even a minor hereditary

modification, software can be modified immediately. This

makes it far superior in this respect to the biological entity in

terms of its evolutionary adaptability. Software, the brain of the

silicon superorganism, controls the action of the entire entity.

Software is the embodiment of logical processes, whether

in support of business functions or in control of physical

devices. The nature of software as an instantiation of process

can apply very broadly, when modeling complex organizations,

or very narrowly as when implementing a discrete numerical

algorithm. Software has a potentially wide range of application,

and that well designed has a potentially long period of

utilization [2].

While some would define software as solely the code that

a programming language generates from the compilation

process, a broader and more precise definition includes

requirements, specifications, designs, program listings,

51

documentation, procedures, rules, measurements, and data as

well as the tools used to create, test, optimize, and implement

the software [1].

Software at the lowest programming level is termed a

source code. This differs from an executable code (i.e., which

can be executed by the hardware to perform one or more

specified functions) in that software is written in one or more

programming languages and cannot, by itself, be executed by

the hardware. A programming language is a set of words,

letters, numerals, and abbreviated mnemonics, regulated by a

specific syntax, used to describe a program to a computer.

There are a wide variety of programming languages, many of

them tailored for a specific type of application. C, one of

today’s more popular programming languages, is used in

engineering as well as business environments while object-

oriented languages such as C ++ and Smalltalk have been

gaining acceptance in both of these environments.

The programming language, whether it be C++, Java,

Visual BASIC, C, FORTRAN, HAL/s, COBOL, or something

else, provides the capability to code such logical constructs as

that having to do with: user interface, model calculations,

program control, message processing, database, data

declaration, simulation, tools and some other.

As a base unit, a line of code can be joined with other

lines of code to form many things. In a traditional software

environment many lines of code form a program, sometimes

referred to as an application program or just plain application.

But lines of source code by themselves cannot be executed.

First, source code must be run through what is called a

compiler to create an object code. Next, the object code is run

through a linker which is used to construct an executable code.

Compilers are programs themselves. Their function is twofold.

The compiler first checks the source code for obvious syntax

errors and then, if it finds none, creates object code for a

52

specific operating system. UNIX, Linux (a spinoff of UNIX),

and NT are all examples of operating systems. An operating

system can be thought of as a supervising program that controls

the application programs that run under its control. Since

operating systems (as well as computer architectures) can be

different from each other, the object code resulting from the

source code compiled for one operating system cannot be

executed under a different kind of operating system – without a

recompilation [1].

Solving a complex business or engineering problem often

requires more than one program. One or more programs that

run in tandem to solve a common problem are known

collectively as a system. By combining objects it is possible to

create more organized systems than those created by traditional

means. Software development becomes a speedier and less

error-prone process as well. Since objects can be reused, once

tested and implemented, they can be placed in a library for

other developers to reuse. The more objects in the library, the

easier and quicker it is to develop new systems.

The process of writing programs and/or objects is known

as software development, or software engineering. It is

composed of a series of steps or phases, collectively referred to

as a development life cycle. The phases include the following:

an analysis or requirements phase, where the business problem

is dissected and understood; a specification phase, where

decisions are made as to how the requirements will be fulfilled;

a design phase; an implementation or programming phase,

where one or more tools are used to write and/or generate code;

a testing phase, where the code is tested against a business test

case and errors in the program are found and corrected; an

installation phase, where the systems are placed in production;

and a maintenance phase, where modifications are made to the

system. But different people develop systems in different ways.

53

These different paradigms make up the opposing viewpoints of

software engineering [3].

A new approach to software engineering is known as

development before the fact (DBTF) which includes a

technology, a language, and a process (or methodology). With

DBTF all aspects of system design and development are

integrated with one systems language and its associated

automation. Reuse naturally takes place throughout the life

cycle. Objects, no matter how complex, can be reused and

integrated. Environment configurations for different kinds of

architectures can be reused. A newly developed system can be

safely reused to increase even further the productivity of the

systems developed with it. The paradigm shift occurs once a

designer realizes that many of the old tools are no longer

needed to design and develop a system. For example, with one

formal semantic language to define and integrate all aspects of

a system, diverse modeling languages (and methodologies for

using them), each of which defines only part of a system, are

no longer necessary. There is no longer a need to reconcile

multiple techniques with semantics that interfere with each

other. DBTF can support a user in addressing many of the

challenges presented in today’s software development

environments [1].

References:

1. Mode of access: http://www.sze.hu/~szenasy/Szenzorok

%20%E9s%20aktu%E1torok/Szenzakt%20jegyzetek/Mech

atronics_handbook%5B1%5D.pdf. – Date of access:

15.02.2018.

2. Mode of access: https://en.wikipedia.org/wiki/Software_design.

– Date of access: 25.02.2018.

3. Mode of access: https://sea.ucar.edu/best-practices/design.

– Date of access: 22.02.2018.

