Low Power XOR Gate Decomposition

Prof. Igor Murashko, e-mail: $\underline{\text { iamurashko@tut.by }}$
Department of Information Technologies
Pavel Sukhoi State Technical University of Gomel, Gomel, Belarus

Currently, the power consumption is one of the most important concerns of VLSI design [1]. Three factors mainly contribute to this trend. Firstly, without low-power design techniques, future mobile devices will have limited battery life or heavy battery pack. Secondly, power dissipation in high-speed devices leads to increase the packaging and cooling costs. Thirdly, all modern VLSI has built-in self testing hardware. This hardware practically don't use in normal mode operation. But during testing they use very intense. In [2] was shown that power dissipation during testing was increasing in 2-3 times. Therefore, low-power techniques are very actual problem.

Modulo two adders are widely used in a variety of digital circuits such as specialized calculators, communication circuits, error correcting circuits, pseudorandom numbers generators, signature analyzers, etc. In this work a problem low-power decomposition of $X O R$ based circuits are considered.

The dominant source of power dissipation in CMOS circuits is dynamic power dissipation. They consist of two components: charging and discharging of the node capacitances (also referred to as the capacitive power dissipation) and short-circuit current between the supply rails during output transitions. The dynamic power dissipation is given by [3]:

$$
P=1 / 2 V_{d d}^{2} f_{C L K} \sum_{i=1}^{n} C_{L}^{i} \cdot W S A_{i},
$$

where $V_{d d}$ - is the supply voltage, $f_{C L K}$ - is the clock frequency, C_{L}^{i} - is the load capacitance at the output of gate, $W S A_{i}$ - is the expected number of transitions per clock cycle (referred to as weighted switching activity, or WSA), n - number of nodes.

In this work next the following notation are used [3]: load capacitance of every nodes is equal; supply voltage and clock frequency is constant; gate delays are assumed to zero. Thus for power estimation it is necessary to calculate weighted switching activity for every node. Technique for calculated WSA was proposed in [4]. The main idea of this technique consists of different time for switching for every node. So every input switching translates onto output (fig.1).

Fig.1. WSA Estimation of multiple-input modulo two adders
Technology decomposition is the step before technology mapping which decompose multiple-input logical elements into a network with only two-input gates (three, four, and all). In [4] was described a problem of decomposition a multi-input $X O R$ gate into a tree of two-input XOR gates. But technology library contain different primitives such as two, tree, four, eight input gates (as example, library AMI350HXGC contain only two and tree input XOR gates [5]). In this work we consider decomposition multiple-input logical elements into a network with any input gates.

Let n is number of inputs multiple-input modulo two adders, d number of inputs gate. Number of gates (k), which is needed for making n-input logical element on d-input gates, is calculated as:

$$
k=\left\lceil\frac{n-1}{d-1}\right\rceil
$$

where $\lceil x\rceil$ - is nearest integer, greatest or equal x.
As has shown in [3], exist many different variants of decomposition multi-input logical elements. This variant has equal number of gates but different switching activity. Figure 2 shown examples decomposition 11 -input modulo two adders into a network with tree-input XOR gates. Both circuits have equal number of gates. But second circuit has switching activity in 1.4 time's less than first circuit.

a)

b)

Fig.2. Decomposition of 11-input element:
a - with maximal WSA, b - with minimal WSA
For the synthesis of multi-input $X O R$-based circuits with minimal switching activity can be used the following recursive algorithm (assume that switching activity for any input is equal 0.5 , number of inputs gate $d=3$). First calculate output switching activity $W S A_{\text {out }}=0,5 \cdot n$ and temporary variable $W S A_{d}=3 \cdot 0,5=1,5$. Then imagine $W S A_{\text {out }}$ as the sum of the 3 numbers $W S A_{\text {out }}=W S A_{1}+W S A_{2}+W S A_{3}$ so that for 2 of 3 variable $W S A_{i}(i=\overline{1,3})$ the result of dividing $W S A_{i}$ by $W S A_{d}$ was integer. Moreover it is necessary following conditions $\left|W S A_{i}-W S A_{j}\right|=0$, $\left|W S A_{i}-W S A_{j}\right|=0,5$ or $\left|W S A_{i}-W S A_{j}\right|=1,0$, where $i=\overline{1,3}, j=\overline{1,3}, i \neq j$. This step repeat for all nodes until $W S A_{i} \neq 0,5$.

The result of algorithm for $n=11, d=3$ was shown on fig.2, b. This algorithm easy can be modified for any gates.

This work is dealing to a problem of decomposition multiple input $X O R$-based circuits. Different variants of decomposition have different switching activity they characterizing power dissipation. An algorithm for synthesis of multi-input $X O R$-based circuits with minimal switching activity was proposed. This algorithm can be used in computer-aided environment.

References:

1. Roy K. and Prasad S.C. Low power CMOS VLSI circuit design. - New York: John Wiley and Sons, Inc., 2000. - 376 p.
2. Zorian Y. A Distributed BIST Control Scheme for Complex VLSI Devices.Proc. $11^{\text {th }}$ IEEE VLSI Test Symposium, May1993. - P. 4-9.
3. Murashko I. and Yarmolik V. Built-In Self-Testing: A power reduction methods. Saarbrucken: LAP LAMBERT Academic Publishing, 2012. - 339 p. [in Russian]
4. Murashko I. Power consumption analysis of XOR based circuits. - Informatics. - 2006, №1 (9). - P.97-103. [In Russian]
5. 0,35 Micron CMOS Gate Array Data Book AMI350HXGC 3,3 Volt (Revision 1.0). - AMI Semiconductors, Inc. - 2002.
