Физико-технические характеристики наливных полов на основе эпоксилной смолы

Костюкевич А.П. Белорусский национальный технический университет

В настоящее время существует огромное количество различных напольных покрытий. Одним из видов таких покрытий являются полимерные эпоксидные полы, используемые при отделке не только промышленных, но и жилых помещений. Эпоксидные полы промышленного назначения в процессе эксплуатации подвергаются высоким механическим нагрузкам.

Эпоксидное покрытие для пола – это двухкомпонентный состав на основе эпоксидной смолы и отвердителя. Также в состав смеси вводятся пигменты, придающие цвет, наполнители и специальные добавки, обеспечивающие равномерное распределение эмульсии по поверхности пола. Для определения прочности при сжатии и изгибе использовалась наливная двухкомпонентная композиция на основе эпоксидной смолы марки «Ероху OS Color New», производства «Remmers GmbH», Германия. Испытания проводились по методике ГОСТ 310.4-81 на образцах-балочках размером 40x40x160мм. Образцы изготавливались двух видов: без наполнителя и с наполнителем. В качестве наполнителя использовался кварцевый песок фракции (0,1-0,3) мм, который вводился в смесь смолы и отвердителя в соотношении по массе 1:1. После 7 суток твердения при температуре (20 ± 2)°С проведены испытания, результаты которых представлены в таблице

Прочность при сжатии и изгибе

Вид компо- зиции Epoxy OS Color New	Прочность при сжатии, МПа						Ре- зуль ти- ру- юще е	Прочность при изгибе, МПа			Ре- зуль ти- ру- ющ ее
без напол- нителя	60,4	59, 1	58, 8	60, 0	54, 6	61, 1	60,2	40,7	40,9	41,6	41,3
с напол- нителем	72,4	72, 8	74, 4	74, 8	74, 0	73, 5	74,2	40,8	41,1	41,6	41,4

Анализ полученных значений показал, что введение кварцевого наполнителя позволяет увеличить прочность при сжатии более чем на 20 %. Существенного влияния на прочность при изгибе наполнитель не оказал.