УДК 621.771.63

ПРОКАТКА ПОЛОС ПЕРЕМЕННОЙ ТОЛЩИНЫ НА ПРОФИЛИРОВАННОЙ ОПРАВКЕ

Докт. техн. наук, проф. ИСАЕВИЧ Л. А.¹⁾, канд. техн. наук, доц. СИДОРЕНКО М. И.²⁾

¹⁾Белорусский национальный технический университет, ²⁾ОАО «Минский автомобильный завод»

Полосы переменной по длине толщины эффективно используют в конструкциях малолистовых рессор большегрузных автомобилей. Известный [1, 2] способ изготовления полосовых заготовок переменной по длине толщины заключается в том, что исходную полосу постоянного поперечного сечения вначале нагревают в индукторе, затем укладывают на ребро перед неприводными валками и далее поступательным движением оправки перпендикулярно линии центров валков осуществляют огибание ее полосой с двух сторон. После этого производят одновременное обжатие обеих ветвей полосы между валками, установленными с постоянным зазором. При этом за счет профилированной по длине оправки копируется заданный контур в ветвях полосы. Затем изогнутую прокатанную полосу снимают с оправки и специальным разгибным устройством распрямляют до плоскостности одной из сторон. Схема устройства для прокатки полос по данному способу показана на рис. 1.

Рис. 1. Схема прокатки профиля на оправке: 1, 2 – валки; 3 – реборды; 4 – оправка; 5 – ролики; 6 – прокатываемая полоса

Для определения силовых и кинематических параметров процесса рассмотрим задачу двумерной прокатки полосы в неприводных валках на подвижной оправке (рис. 2). В анализе используем метод совместного решения приближенных дифференциальных уравнений равновесия и уравнения пластичности (метод плоских сечений). Уравнение равновесия сил на ось *ОХ* для зоны отставания запишем в виде

$$(\sigma_{x} + d\sigma_{x})(h_{x} + dh_{x}) - \sigma_{x}h_{x} - \sigma_{z\phi}\frac{dx}{\cos\varphi_{x}}\sin\varphi_{x} + \sigma_{z\theta}\frac{dx}{\cos\theta}\sin\theta + \sigma_{z\theta}\frac{dx}{\cos\varphi_{x}}\cos\varphi_{x} + \sigma_{z\theta}\frac{dx}{\cos\theta}\sin\theta + \sigma_{z\theta}\frac{dx}{\cos\theta}\cos\theta = 0.$$

После преобразований дифференциального уравнения, пренебрегая бесконечно малыми величинами второго порядка, получим

$$d\sigma_{x}h_{x} + \sigma_{x}dh_{x} - \sigma_{z\varphi}dh_{x\varphi} + \sigma_{z\theta}dh_{x\theta} + \tau_{B}\frac{dh_{x\varphi}}{tg\varphi_{x}} + \tau_{O}\frac{dh_{x\theta}}{tg\theta} = 0.$$
 (1)

Поскольку в зоне отставания при $\alpha > \theta$ величина $\phi_x > \theta$, согласно рис. 26 можно записать, что $dh_x = dh_{x\phi} - dh_{x\theta}$. Ввиду разной направленности вдоль оси *OX* составляющих напряжений $\sigma_{z\phi}$ и $\sigma_{z\theta}$ в уравнении (1) очевидно можно принять $-\sigma_{z\phi}dh_{x\phi} + \sigma_{z\theta}dh_{x\theta} = -\sigma_z dh_x$. В связи с этим данное уравнение запишется в виде

$$d\sigma_{x}h_{x} + \sigma_{x}dh_{x} - \sigma_{z}dh_{x} + \tau_{b}\frac{dh_{x\phi}}{\mathrm{tg}\varphi_{x}} + \tau_{o}\frac{dh_{x\theta}}{\mathrm{tg}\theta} = 0.$$

Далее примем, что $tg\phi = \frac{tg\phi_x + tg\theta}{2}$. В свою очередь на основании [3] дугу контакта металла с валком заменим хордой $tg\phi_x = tg\frac{\alpha + \gamma}{2}$, после

чего можно записать
$$tg\phi = \frac{tg\frac{\alpha+\gamma}{2} + tg\theta}{2}$$

Рис. 2. Схема приложения сил в очаге деформации

Зададим условие трения по Амонтону [3] $\tau_b = \tau_o = f \sigma_z$, где f – коэффициент контактного трения. В связи с этим предыдущее выражение примет вид

$$d\sigma_{x}h_{x} - \sigma_{x}dh_{x} - \sigma_{z}dh_{x} + f\sigma_{z}dh_{x} \times \frac{2}{\operatorname{tg}\frac{\alpha + \gamma}{2} + \operatorname{tg}\theta} = 0.$$
(2)

Введем обозначение
$$\frac{2f}{\mathrm{tg}\frac{\alpha+\gamma}{2}+\mathrm{tg}\theta} = \delta_0.$$

Уравнение пластичности для нашего случая представим как

$$\sigma_z - \sigma_x = \beta \sigma_{\rm T}.$$
 (3)

Откуда $\sigma_x = \sigma_z - \beta \sigma_r$, а $d\sigma_x = d\sigma_z$. Тогда с учетом уравнения пластичности выражение (2) запишется в виде $d\sigma_z - (\sigma_z - \sigma_x) \frac{dh_x}{h_x} +$

$$\delta_0 \sigma_z \frac{dh_x}{h_x} = 0$$
или
 $d\sigma_z = (\beta \sigma_r - \delta_0 \sigma_z) \frac{dh_x}{h_x} = 0.$ (4)

После интегрирования получим $\ln(\beta\sigma_{T} - \delta_{0}\sigma_{z}) = -\delta_{0}\ln h_{x} + C_{0}.$

Отсюда $\beta \sigma_{\mathrm{T}} - \delta_0 \sigma_z = +C_0 h_x^{-\delta_0}$ или $\sigma_z = \frac{1}{\delta_0} (\beta \sigma_{\mathrm{T}} - C_0 h_x^{-\delta_0}).$

Постоянную интегрирования C_0 найдем из граничных условий, согласно которым при $h_x = h_0$ величина $\sigma_z = \beta \sigma_r$. Тогда

$$C_0 = \beta \sigma_{\mathrm{T}} \left(1 - \frac{1}{\delta_0} \right) h_0^{\delta_0}.$$

Подставив значение постоянной интегрирования в предыдущее выражение, окончательно запишем для зоны отставания

$$\sigma_{z_{\text{or}}} = \frac{\beta \sigma_{\text{T}}}{\delta_0} [\delta_0 - 1 \left(\frac{h_0}{h_x}\right)^{\delta_0} + 1].$$
 (5)

В пределах угла γ касательные контактные напряжения на валке $\tau_{\rm B}$ и на оправке $\tau_{\rm o}$ имеют разные направления, и образуется так называемая зона сдвига (рис. 2). В силу этого дифференциальное уравнение (1) предстанет в ином виде, а именно:

$$d\sigma_x h_x + \sigma_x dh_x - \sigma_z dh_x = 0.$$

С учетом уравнения пластичности (3) оно запишется как

$$d\sigma_{z} - \beta\sigma_{T} \frac{dh_{x}}{h_{x}} = 0, \qquad (6)$$

а после интегрирования примет вид $\sigma_z = \beta \sigma_r \ln h_x + C_1$.

Постоянную интегрирования определим из граничных условий, в соответствии с которыми

Постоянную интегрирования найдем из граничных условий, согласно которым при $h_x = h_1$

при $h_x = h_\gamma$ согласно уравнению (5) $\sigma_z =$

$$= \frac{\beta \sigma_{\rm T}}{\delta_0} \left[\delta_0 - 1 \left(\frac{h_0}{h_{\gamma}} \right) + 1 \right]$$
. Тогда можно запи-

сать, что $\frac{\beta \sigma_{\rm T}}{\delta_0} \left[\delta_0 - 1 \left(\frac{h_0}{h_x} \right)^{\delta_0} + 1 \right] = \beta \sigma_{\rm T} \ln h_{\gamma} + C_1.$

Отсюда $C_1 = \beta \sigma_{\rm T} \left\{ \frac{1}{\delta_0} \left[\delta_0 - 1 \left(\frac{h_0}{h_{\gamma}} \right)^{\delta_0} + 1 \right] - \ln h_{\gamma} \right\}.$

Далее с учетом значения постоянной интегрирования выражение для зоны сдвига запишется в форме

$$\sigma_{zc} = \beta \sigma_{\rm T} \left\{ \frac{1}{\delta_0} \left[\delta_0 - 1 \left(\frac{h_0}{h_{\gamma}} \right)^{\delta_0} + 1 \right] - \ln \frac{h_{\gamma}}{h_x} \right\}.$$
(7)

Анализируя процесс прокатки полос на профилированной подвижной оправке, нетрудно заметить, что при определенных углах наклона рабочего профиля оправки к направлению ее перемещения возможно появление зоны опережения одновременно на валках и оправке. Дифференциальное уравнение равновесия (2) для этой зоны в соответствии с [1] запишется в виде

$$d\sigma_x h_x - \sigma_x dh_x - \sigma_z dh_x + f\sigma_z dh_x \frac{2}{\operatorname{tg} \frac{\gamma}{2} + \operatorname{tg} \theta} = 0.$$
(8)

Обозначим
$$\frac{2f}{\mathrm{tg}\frac{\gamma}{2} + \mathrm{tg}\theta} = \delta_1$$
. В связи с этим

выражение (2) примет вид

$$d\sigma_z = (\beta\sigma_{\rm T} + \delta_{\rm I}\sigma_z)\frac{dh_x}{h_x}.$$
 (9)

После его интегрирования получим $\ln(\beta\sigma_{T} + \delta_{1}\sigma_{z}) = \delta_{1}\ln h_{x} + C_{1}$, а с учетом преобразований запишем $\beta\sigma_{T} = \delta_{1}\sigma_{z} = C_{1}h_{x}^{\delta_{1}}$. Отсюда $\sigma_{z} = \frac{1}{\delta_{z}}(\beta\sigma_{T} + C_{1}h_{x}^{\delta_{1}})$.

величина $\sigma_z = \beta \sigma_T$. Тогда $C_1 = \beta \sigma_T \left(1 + \frac{1}{\delta_1} \right) h_1^{-\delta_1}$ и далее с учетом постоянной интегрирования данное выражение для зоны опережения

примет вид

$$\sigma_{z_{\text{OH}}} = \frac{\beta \sigma_{\text{T}}}{\delta_{1}} \left[(\delta_{1} + 1) \left(\frac{h_{x}}{h_{1}} \right)^{\delta_{1}} - 1 \right].$$
(10)

С целью установления границы между зонами сдвига и опережения приравняем выражения (7) и (10)

$$\frac{1}{\delta_0} \left[\delta_0 - 1 \left(\frac{h_0}{h_\gamma} \right)^{\delta_0} + 1 \right] - \ln \frac{h_\gamma}{h_x} = \frac{1}{\delta_1} \left[(\delta_1 + 1) \left(\frac{h_x}{h_1} \right)^{\delta_1} - 1 \right].$$
(11)

Отсюда определим h_x , которое в данном случае будет равно h_{γ_i} .

Входящую в левую часть выражения (11) величину h_{γ} для случая симметричной прокатки можно найти в соответствии с [3] из выражения

$$h_{\gamma} = h_1 + \frac{D\gamma^2}{2}.$$
 (12)

В свою очередь для случая прокатки полосы в валках равного диаметра с одним холостым (неприводным) валком входящая сюда величина нейтрального угла согласно [4, 5] может быть найдена по формуле

$$\gamma = \frac{\alpha}{2} \left(1 + \frac{f_1 d}{fD} \right), \tag{13}$$

где d – диаметр шеек валка; f_1 – коэффициент контактного трения на шейке валка; α – угол контакта полосы с валком, который может быть определен в этом случае с помощью известного [3] выражения

$$\alpha = \sqrt{\frac{2 h_0 - h_1}{D}}.$$
 (14)

Однако процесс прокатки полос в неприводных валках на подвижной профилированной оправке является несимметричным, так как условия деформирования для валка и оправки различны [6]. Его с некоторым приближением можно рассматривать как прокатку в валках разного диаметра [3]. Поэтому суммарное обжатие по толщине полосы будет складываться из обжатия со стороны валка и оправки. В связи с тем, что металл полосы по своим механическим свойствам однороден и усилие, действующее с его стороны на валок и оправку, одинаково, можно принять при неизменной ширине полосы вдоль очага деформации равенство длин AC и EN (рис. 3).

Рис. 3. Схема обжатия полосы на оправке

В рассматриваемом случае прокатки полоса входит в очаг деформации под углом наклона ψ к поверхности оправки. Вследствие этого обжатие заготовки оправкой можно определить выражением $\Delta h_{onp} = EM \cos \psi$.

Для отыскания значения угла ψ сначала определим угол α. Из рис. 3 следует, что

$$AC = EN = D\sin\frac{\alpha}{2}$$

а отрезок

$$AB = AK + BK = AK + h_1$$

В свою очередь величина

$$AK = AC\sin\frac{\alpha}{2} = D\sin^2\frac{\alpha}{2}$$

Тогда можно записать, что

$$AB = h_1 + D\sin^2\frac{\alpha}{2}.$$

В то же время $AB = AE \cos \psi = h_0 \cos \psi$. Поэтому нетрудно получить равенство

$$h_1 + D\sin^2\frac{\alpha}{2} = h_0\cos\psi.$$
 (15)

В него входят два неизвестных параметра α и ψ . Согласно рис. 3, отрезок $BE = AC - \alpha$

 $-AC\cos\frac{\alpha}{2} = AC\left(1 - \cos\frac{\alpha}{2}\right) = D\sin\frac{\alpha}{2}\left(1 - \cos\frac{\alpha}{2}\right).$ Но $BE = AE\sin\psi = h_0\sin\psi.$ Тогда можно полу-

чить другое равенство

$$D\sin\frac{\alpha}{2}\left(1-\cos\frac{\alpha}{2}\right) = h_0\sin\psi.$$
 (16)

Учитывая, что $\sin^2 \psi + \cos^2 \psi = 1$, найдем параметр $\cos \psi = \sqrt{1 - \sin^2 \psi}$. Подставляя его в (15), запишем $h_1 + D \sin^2 \frac{\alpha}{2} = \sqrt{h_0 - h_0 \sin^2 \psi}$. Решая данное выражение совместно с равенством (16), окончательно можно записать

$$h_1 + D\sin^2\frac{\alpha}{2} = \sqrt{h_0^2 - \left(1 - \cos\frac{\alpha}{2}\right)^2 D^2 \sin^2\frac{\alpha}{2}}.$$
 (17)

Полученное уравнение является трансцендентным, и его решение возможно только численным методом. В рассматриваемом случае использован метод половинного деления. Искомой величиной здесь является угол α, и, зная его, нетрудно определить абсолютное обжатие полосы валком с помощью выражения

$$\Delta h_{\rm B} = \frac{D}{2} \ 1 - \cos \alpha \ . \tag{18}$$

В табл. 1 представлены результаты расчета углов α , γ , γ_1 , а также параметров обжатий $\Delta h_{\rm B}$, $\Delta h_{\rm onp}$ и значений h_{γ} , h_{γ_1} , l_{α} , l_{γ} , l_{γ_1} , l_{Λ} разных диаметров валков D и коэффициентов контактного трения f при прокатке полосы с начальной толщиной $h_0 = 22$ мм до конечной толщины $h_1 = 10$ мм. При этом значения длин дуг l определяли как произведение радиуса бочки валка на соответствующий угол в очаге деформации.

Анализ полученных значений обжатий полосы валком и оправкой показывает, что со стороны оправки оно практически отсутствует. В связи с этим величину угла контакта полосы с валком целесообразно определять не с помощью уравнения (14), а на основании выражения (18), из которого следует, что

$$\alpha = \arccos\left[1 - \frac{2 h_0 - h_1}{D}\right].$$
 (19)

42 , 1, 2013 cience & Technique Аналогичным образом для рассматриваемого его случая нетрудно определить значение нейтрального угла γ₁ с помощью выражения

$$\gamma_1 = \arccos\left[1 - \frac{2 h_{\gamma_1} - h_1}{D}\right]. \tag{20}$$

Таблица 1

Расчетные значения параметров очага деформации при прокатке полосы на оправке в валках разного диаметра, диаметре цапф $d_1 = 100$ мм и коэффициенте контактного трения в них $f_1 = 0,1$

f = 0,3					
<i>D</i> , мм	100	150	200	250	300
α, град.	40,560	32,850	28,300	25,270	23,060
tgα	0,855	0,646	0,543	0,472	0,426
$\Delta h_{\scriptscriptstyle \mathrm{B}}$, мм	11,970	11,960	11,950	11,940	11,940
$\Delta h_{\text{опр}}$, мм	0,030	0,040	0,050	0,060	0,060
ү, град.	39,220	29,170	23,710	20,280	17,910
h_{γ} , мм	21,250	19,520	18,430	17,750	17,250
γ ₁ , град.	0	0	0	1,290	2,460
$h_{\gamma 1}$, мм	10,000	10,000	10,000	10,030	10,140
l_{α} , мм	35,380	42,980	49,370	55,120	60,340
l_{arphi} мм	34,210	38,160	41,140	44,220	46,860
$l_{\gamma 1}$, мм	0	0	0	2,8	6,430
f = 0,4					
ү, град.	34,600	25,980	21,320	18,370	16,310
<i>h</i> _γ , мм	18,840	17,600	16,850	16,370	16,060
γ ₁ , град.	0	0,800	3,260	4,150	4,550
$h_{\gamma 1}$, мм	10,000	10,007	10,160	10,330	10,470
l_{φ} мм	30,180	33,990	37,190	40,060	42,680
$l_{\gamma 1}$, мм	0	1,050	5,680	9,040	11,910

Далее по известному значению угла γ , рассчитанному с помощью (13) на основании уравнения (20), не представляет труда найти параметр

$$h_{\gamma} = h_1 + \frac{D}{2} \ 1 - \cos \gamma \ .$$
 (21)

При установившемся процессе прокатки вращение неприводного валка обеспечивается согласно [3, 4] в случае, когда $tg\alpha \le 2f$. Однако данное условие справедливо при отсутствии трения в шейках валка, хотя на самом деле оно имеет место и оказывает тормозящее действие на валок. Это равносильно уменьшению контактного трения на бочке валка на величину f_1d/D , которая определяется из равенства моментов $f_1d = fD$. Тогда условие вращения валков запишется в виде

$$tg\alpha \le 2f - f_1 \frac{d}{D}.$$
 (22)

При горячей прокатке стали в сухих валках согласно [3, 7] коэффициент контактного трения составляет в среднем f = 0,3. Коэффициент трения в подшипниках скольжения шеек валков со смазкой при бронзовых вкладышах [8] не превышает $f_1 = 0,1$. Тогда условие захвата при диаметре шеек валка d = 100 мм будет $tg\alpha \le 0,6-10/D$. Сравнивая полученные при этом результаты с данными табл. 1, нетрудно установить, что гарантированное вращение неприводному валку обеспечивается при диаметре его бочки $D \ge 200$ мм. При меньших диаметрах валков неизбежно происходит их торможение.

На рис. 4 представлены эпюры нормальных контактных напряжений в очаге деформации при прокатке полосы на оправке в валках различного диаметра при разных коэффициентах контактного трения, построенные с помощью выражений (5), (7), (10).

Для определения распорного усилия между валком и оправкой необходимо проинтегрировать функции (5), (7) и (10) в пределах их изменения

$$P_{\rm np} = \frac{\beta \sigma_{\rm x} B_{\rm cp} D \sin \alpha}{2 h_0 - h_1} \Biggl\{ \int_{h_{\gamma}}^{h_0} \frac{1}{\delta_0} \Biggl[\delta_0 - 1 \left(\frac{h_0}{h_x} \right)^{\delta_0} + 1 \Biggr] dh_x + \int_{h_0}^{h_{\gamma}} \frac{1}{\delta_0} \Biggl\langle \Biggl[\delta_0 - 1 \left(\frac{h_0}{h_{\gamma}} \right)^{\delta_0} + 1 \Biggr] - \ln \frac{h_{\gamma}}{h_x} \Biggr\rangle dh_x + \\ + \int_{h_1}^{h_{\gamma}} \frac{1}{\delta_1} \Biggl[\delta_1 + 1 \left(\frac{h_x}{h_1} \right)^{\delta_1} - 1 \Biggr] dh_x \Biggr\},$$

где *B*_{ср} – средняя по длине очага ширина полосы.

Рис. 4. Эпюры нормальных контактных напряжений в очаге деформации при прокатке полос на оправке в валках различного диаметра: 0 – *D* = 150 мм; 1 – 200; 2 – 250; 3 – 300 мм и разных коэффициентах контактного трения *f*

В результате получим окончательное уравнение

$$P_{\rm np} = \frac{\beta \sigma_{\rm r} B_{\rm cp} D \sin \alpha}{2 h_0 - h_1} \left\{ h_{\gamma} \left[\left(\frac{h_0}{h_{\gamma}} \right)^{\delta_0} - \frac{1}{\delta_0} \right] + h_{\gamma_1} \left\langle \frac{1}{\delta_0} \left[\ln \frac{h_{\gamma}}{h_{\gamma_1}} + \left(\frac{h_0}{h_{\gamma}} \right)^{\delta_0} \right] - \left(\frac{h_0}{h_{\gamma}} \right)^{\delta_0} + \frac{1}{\delta_1} \left[\left(\frac{h_{\gamma_1}}{h_1} \right)^{\delta_1} - 1 \right] \right\rangle \right\}.$$
(23)

На рис. 5 представлены кривые изменения усилия прокатки полосы начальной толщины $h_0 = 22$ мм до конечного значения $h_1 = 10$ мм на оправке в валках различного диаметра в зависимости от степени деформации при разных коэффициентах контактного трения. Предельная степень деформации при этом составляет $\varepsilon_{np} = 0,545$.

Рис. 5. Изменение значений усилия прокатки полосы шириной 90 мм из стали 60С2А в валках различного диаметра в зависимости от степени деформации при разных коэффициентах контактного трения: температура прокатки 980 °C; $\sigma_{\rm r} = 100$ МПа [8]; 0 - D = 150 мм; 1 - 200; 2 - 250; 3 - 300 мм; — -f = 0,3; ---f = 0,4

Из графиков видно, что с увеличением степени деформации усилие прокатки возрастает и наиболее существенно с повышением коэффициента контактного трения и диаметров валков.

Представленные эпюры нормальных контактных напряжений и графики изменения распорного усилия на валках построены при условии отсутствия переднего натяжения полосы. Попытаемся проверить это условие.

На рис. 6 показана схема сил, действующих в очаге деформации со стороны валка и оправки с учетом наличия трения в опорных шейках. Со стороны валка на полосу действует выталкивающая сила $P_x = P \sin \omega$, где $\omega = \alpha/2 + \lambda$. В свою очередь, согласно [4, 10], можно запи-

Рис. 6. Схема действующих сил в очаге деформации

, 1, 2013 Science & Technique Вертикальная составляющая усилия прокатки может быть найдена из выражения $P_z = P \cos \omega$. Таким образом, нетрудно установить что

$$P_x = P_z tg\omega \qquad (24)$$

Со стороны оправки на полосу действует заталкивающая сила

$$Q = R_z tg\omega + fR_z.$$
(25)

Для сохранения равновесия в очаге необходимо, чтобы $P_z = R_z$. Тогда с учетом (24) и (25) можно записать, что $P_z tg\omega \le R_z tg\theta + f$. Подставляя сюда значение угла ω , придем к выражению

$$\operatorname{tg}\left(\frac{\alpha}{2} + f_1 \frac{d}{D}\right) \le \operatorname{tg}\theta + f.$$
 (26)

Поскольку угол θ наклона образующей оправки является величиной постоянной, целесообразно ввести обозначение tg $\theta = m$. Тогда уравнение (26) примет вид

$$\operatorname{tg}\left(\frac{\alpha}{2}+f_1\frac{d}{D}\right) \leq m+f.$$

Отсюда нетрудно найти значение угла

$$\alpha \le 2 \left[\operatorname{arctg} \ m + f \ -f_1 \frac{d}{D} \right], \qquad (27)$$

при котором прокатка полосы на профилированной оправке возможна без переднего натяжения.

Учитывая, что при прокатке полосы на оправке обжатие заготовки осуществляется одновременно двумя валками, толкающее усилие, приложенное к оправке, согласно рис. 6 определим как $T = 2P_x = 2P_z tg\omega = 2P_{np}tg\omega$, поскольку примем, что $P_z = P_{np}$.

Раскрывая значение угла ω, окончательно можно записать

$$T = 2P_{\rm np} tg \left(\frac{\alpha}{2} + f_1 \frac{d}{D}\right).$$
 (28)

На рис. 7 представлены графики изменения толкающего усилия на оправке по мере обжатия полосы в валках разного диаметра. Из графиков видно, что с увеличением степени деформации в очаге толкающее усилие на оправке возрастает.

Рис. 7. Изменение значений толкающего усилия на оправке при прокатке полосы шириной 90 мм из стали 60C2A в валках различного диаметра в зависимости от степени деформации при разных коэффициентах контактного трения: температура прокатки 980 °C; $\sigma_{\rm T} = 100$ МПа [8]; 0 – D = 150 мм; 1 – 200; 2 – 250; 3 – 300 мм; — -f = 0,3; ----f = 0,4

вывод

Таким образом, установлено, что обжатие полосы со стороны оправки составляет лишь несколько процентов от суммарного обжатия и им можно пренебречь. Приведены уравнения для расчета нормальных контактных напряжений в очаге деформации и усилия прокатки, с помощью которых построены соответствующие графические зависимости.

ЛИТЕРАТУРА

1. Степаненко, А. В. Прокатка полос переменного профиля / А. В. Степаненко, В. А. Король, Л. А. Смирнова. – Гомель: ИММИ НАНБ, 2001. – 180 с.

2. Сидоренко, М. И. Прокатка полос переменной толщины для малолистовых рессор / М. И. Сидоренко, Л. А. Исаевич // Литье и металлургия. – 2012. – № 1. – С. 52–56.

 Целиков, А. И. Теория продольной прокатки / А. И. Целиков, Г. С. Никитин, С. Е. Рокотян. – М.: Металлургия, 1980. – 320 с.

4. **Выдрин, В. Н.** Динамика прокатных станов / В. Н. Выдрин. – Свердловск: Металлургиздат, 1960. – 255 с.

5. **Lueq, W. K.** Treptov / W. K. Lueq // Stahl and Eiseen. – 1955. – № 7.

6. Siebel, E. Archio fur das Eisenhuttenwesen / E. Siebel. – 1941. – No 3.

7. **Грудев, А. П.** Внешнее трение при прокатке / А. П. Грудев. – М.: Металлургия, 1973. – 288 с.

8. **Анурьев, В. И.** Справочник конструктора-машиностроителя / В. И. Анурьев. – М.: Машиностроение, 1980. – Т. 1. – 728 с.

9. **Третьяков, А. В.** Механические свойства металлов и сплавов при обработке давлением / А. В. Третьяков, В. И. Зюзин. – М.: Металлургия. 1973. – 224 с.

10. Анализ конструкции шлиценакатных роликовых головок / В. П. Северденко [и др.] // Пластическая дефор-

мация и обработка металлов давлением. – Минск: Наука и техника, 1969. – С. 201–214.

Поступила 11.07.2012